14

Euler identity can be rewritten in a summation notation. Here I replaced the summation with an integral and Gamma function for factorial. According numerical analysis and WA (online) this integral seems to converge. Question: How to solve integral and were does this sort of continuous Euler's identity occur in math applications? Method: $e^{i\pi}+1=0$.

With (Taylor): $$e^{x}=\sum_{k=0}^{\infty} \frac{x^k}{k!}\text{ and }i^k= e^{(i \pi k)/2}$$

Euler (discrete): $$e^{i \pi}=\sum_{k=0}^{\infty} \frac{\pi^k}{k!} \left(\cos \left(\frac{\pi k}{2} \right) + i \sin \left(\frac{\pi k}{2} \right)\right) = -1$$

Then I took the freedom to rewrite it in a sort of continuous notation: (edit: from comment @eyeballfrog, gamma + 1. plot updated).

Pseudo Euler (continuous): $$ \int_{0}^{\infty} \frac{\pi^x}{\Gamma (x+1)} \left(\cos \left( \frac{\pi x}{2} \right) + i\sin \left(\frac{\pi x}{2}\right)\right) dx $$

$$ \int_{0}^{\infty} \frac{\pi^x}{\Gamma (x+1)} e^{\frac{i \pi x}{2}} dx =?$$

Did numerical analysis see plot below. This matched the answer given by WA (without method): $ \int_{0}^{\infty} \frac{\pi^x}{\Gamma (x+1)} e^{\frac{i \pi x}{2}} dx = -1.33432 - 0.125029 i.$

Question:

  • Could someone give me a clue how to solve such an integral in complex domain?
  • Does this type of integral occur more often: and what are it's applications?

This question arises from a debate I have for some years with people who believe pi is related to the golden ratio. I debate and argue why that is not the case. The latest analysis gave this formula. As math amateur I am looking for more insight (1).

enter image description here

import matplotlib.pyplot as plt
import numpy as np
from scipy.special import factorial
from scipy.special import gamma

Define layout spectrogram plot and time series

layout = [ ["xy_discrete", "sumxy_discrete"], ["xy_continous", "sumxy_continuous"] ] gs_kw = dict(width_ratios=[1, 1], height_ratios=[1, 1]) fig, axd = plt.subplot_mosaic(layout, figsize=(12, 12), layout="constrained", gridspec_kw=gs_kw)

k = np.arange(50)
r = (np.pi)*k / factorial(k) x = r np.cos(np.pi * k / 2) y = r * np.sin(np.pi * k / 2)

axd["xy_discrete"].plot(x, y, color="black", linewidth=1) axd["xy_discrete"].plot(x[0], y[0], color="black", marker="o", fillstyle="none") axd["xy_discrete"].annotate('start: [' + str(x[0]) +", " + str(y[0]) + "]", xy=(x[0], y[0]), xycoords='data', xytext=(2, 5), textcoords='offset points') axd["xy_discrete"].plot(x[-1], y[-1], color="black", marker="o") axd["xy_discrete"].annotate('stop: [' + str(np.round(x[-1],1)) +", " + str(np.round(y[-1],1)) + "]", xy=(x[-1], y[-1]), xycoords='data', xytext=(2, 15), textcoords='offset points') axd["xy_discrete"].set_xlabel("x") axd["xy_discrete"].set_ylabel("y") axd["xy_discrete"].axis("equal") axd["xy_discrete"].title.set_text('Discrete k: values')

sumx = np.cumsum(x) sumy = np.cumsum(y)

axd["sumxy_discrete"].plot(sumx, sumy, color="black", linewidth=1) axd["sumxy_discrete"].plot(sumx[0], sumy[0], color="black", marker="o", fillstyle="none") axd["sumxy_discrete"].annotate('start: [' + str(np.round(sumx[0],1)) +", " + str(np.round(sumy[0],1)) + "]", xy=(sumx[0], sumy[0]), xycoords='data', xytext=(-25, -15), textcoords='offset points') axd["sumxy_discrete"].plot(sumx[-1], sumy[-1], color="black", marker="o") axd["sumxy_discrete"].annotate('stop: [' + str(np.round(sumx[-1],1)) +", " + str(np.round(sumy[-1],1)) + "]", xy=(sumx[-1], sumy[-1]), xycoords='data', xytext=(2, 15), textcoords='offset points') axd["sumxy_discrete"].set_xlabel("x") axd["sumxy_discrete"].set_ylabel("y") axd["sumxy_discrete"].axis("equal") axd["sumxy_discrete"].title.set_text('Discrete k: sum')
step = 0.01 k = np.arange(0, 50, step)
r = (np.pi)*k / gamma(k + 1)
x = r
np.cos(np.pi * k / 2)
y = r * np.sin(np.pi * k / 2)

axd["xy_continous"].plot(x, y, color="black", linewidth=1) axd["xy_continous"].plot(x[0], y[0], color="black", marker="o", fillstyle="none") axd["xy_continous"].annotate('start: [' + str(x[0]) +", " + str(y[0]) + "]", xy=(x[0], y[0]), xycoords='data', xytext=(15, 5), textcoords='offset points') axd["xy_continous"].plot(x[-1], y[-1], color="black", marker="o") axd["xy_continous"].annotate('stop: [' + str(np.round(x[-1],1)) +", " + str(np.round(y[-1],1)) + "]", xy=(x[-1], y[-1]), xycoords='data', xytext=(15, 20), textcoords='offset points') axd["xy_continous"].set_xlabel("x") axd["xy_continous"].set_ylabel("y") axd["xy_continous"].axis("equal") axd["xy_continous"].title.set_text('Continuous x: values')

sumx = stepnp.cumsum(x) sumy = stepnp.cumsum(y)

axd["sumxy_continuous"].plot(sumx, sumy, color="black", linewidth=1) axd["sumxy_continuous"].plot(sumx[0], sumy[0], color="black", marker="o", fillstyle="none") axd["sumxy_continuous"].annotate('start: [' + str(np.round(sumx[0],1)) +", " + str(np.round(sumy[0],1)) + "]", xy=(sumx[0], sumy[0]), xycoords='data', xytext=(10, 5), textcoords='offset points') axd["sumxy_continuous"].plot(sumx[-1], sumy[-1], color="black", marker="o") axd["sumxy_continuous"].annotate('stop: [' + str(np.round(sumx[-1],4)) +", " + str(np.round(sumy[-1],4)) + "]", xy=(sumx[-1], sumy[-1]), xycoords='data', xytext=(2, 15), textcoords='offset points') axd["sumxy_continuous"].set_xlabel("x") axd["sumxy_continuous"].set_ylabel("y") axd["sumxy_continuous"].axis("equal") axd["sumxy_continuous"].title.set_text('Continuous x: integral')

plt.show()

  • 1
    See https://en.wikipedia.org/wiki/Cardioid . – Barackouda Feb 09 '23 at 15:26
  • 1
    I tried the Python code here: https://www.programiz.com/python-programming/online-compiler/ dosen't work ? – Mariusz Iwaniuk Feb 09 '23 at 15:32
  • @MariuszIwaniuk, unfortunate uses scipy (for gamma and factorial, have no other method this quick). Could you try: https://trinket.io/embed/python3/a5bd54189b including scipy. Thanks for comment also reduces iterations. – Vincent Preemen Feb 09 '23 at 15:38
  • 1
    Shouldn't that be $\Gamma(x+1)$ in the denominator? – eyeballfrog Feb 09 '23 at 15:39
  • @eyeballfrog, think so will edit the plots and code – Vincent Preemen Feb 09 '23 at 15:41
  • 1
    I found this integral in a table of integrals, but it gives it in terms of the $\nu$ function, which is essentially defined as being this integral. So...not sure if that's helpful. – eyeballfrog Feb 09 '23 at 15:46
  • @ErikSatie, thank you. According you info I picture the presented plot then as cariods where radius changes as function of angle. Have to study further. – Vincent Preemen Feb 09 '23 at 15:52
  • @eyeballfrog, thank you. This link for my memo: https://en.wikipedia.org/wiki/Nu_function – Vincent Preemen Feb 09 '23 at 15:59
  • 2
    The fact that this function has been given its own name is a clue that there's no known closed form expression for it. – Robert Israel Feb 09 '23 at 16:03
  • 1
    Indeed, most special functions are defined as "the solution to some important problem that has no elementary closed form", such as all those functions defined as solutions to some 2nd order DE that came up in physics – eyeballfrog Feb 09 '23 at 16:22
  • 1
    @OOOVincentOOO, perhaps you should write $$e^{x}=\sum_{k=0}^{\infty} \frac{x^k}{k!}\quad\text{and}\quad i^k= e^{(i \pi\color{blue}{\mathbf k})/2}$$ instead of

    $$e^{x}=\sum_{k=0}^{\infty} \frac{x^k}{k!}\quad\text{and}\quad i^k= e^{(i \pi\color{red}{\mathbf x})/2}$$

    – Angelo Feb 09 '23 at 16:58

1 Answers1

2

Some ideas that could be helpful.

The function $E(x) = \int_0^\infty \frac{x^t}{\Gamma(t+1)}dt$ is interesting on it's own as it would be a continuous version of the exponential power series $e^x = \sum_{n=0}^\infty \frac{x^n}{n!}$.

This function satisfies the following formula $$ E(x) = \frac{1}{x}e^{x} - \frac{1}{x}\int_{0}^{\infty}\frac{e^{-xt}}{t\{\pi^{2} + (\log t)^{2}\}}\,dt,\tag{1} $$ which is mentioned here on page 25 and with a proof on page 196, and which is also discussed here.

A similar formula, but more useful for us, is the following: $$ E(x)= e^x - \int_0^\infty \frac{e^{-xt}}{t(\pi^2+\log^2t)}\, dt. \tag{2} $$ Now, either the two formulas are both correct and the difference is in $``\{\}``$ denoting the fractional part in (1), or both $()$ and $\{\}$ are the same, and one of the formulas is incorrect (the difference stemming from $x^t$ or $x^{t+1}$ in the numerator in the integral defining $E(x)$).
Let's assume that (2) is correct. More information about it can be found here.

The proof uses the reflection formula of the Gamma function $\Gamma(z)\Gamma(1-z)=\frac{z}{\sin(\pi z)}$ and the Laplace transform of the sine $\mathcal{L}(\sin(a z)) = \int_0^\infty \sin(a z) e^{-sz}dz = \frac{a}{a^2 + s^2}$.

You want to solve $$ \int_{0}^{\infty} \frac{\pi^x}{\Gamma (x+1)} e^{\frac{i \pi x}{2}} \,dx $$ I suggest to go back to setting $$ \int_{0}^{\infty} \frac{(i\pi)^x}{\Gamma (x+1)}\, dx $$ instead, as this will easily fit into the above formula.
In fact, the value that we want to compute is $$ E(i\pi) = \int_{0}^{\infty} \frac{(i\pi)^x}{\Gamma (x+1)}\, dx = e^{i\pi} - \int_0^\infty \frac{e^{-i\pi t}}{t(\pi^2+\log^2t)}\, dt. $$ which is equal to $$ e^{i\pi} - \int_0^\infty \frac{\cos(t)}{t(\pi^2+\log^2t)}\, dt + i\int_0^\infty \frac{\sin(t)}{t(\pi^2+\log^2t)}\, dt. $$

I believe that there is no closed form of $$ \int_0^\infty \frac{e^{-i\pi t}}{t(\pi^2+\log^2t)}\, dt $$ and I am not sure if there are ways to compute it to a high precision when $x$ is a pure imaginary number (for $\mathfrak{Re}(x)>0$) it should be easy).
The issue is that the integral is not absolutely convergent, we have an oscillating integral that does converge, but with no (to me known) closed form.


EDIT: It should be noted that the function $E(x)$ is only defined for $x\geq 0$. While I feel that it shouldn't be hard to extend it to $\mathfrak{Re}(x)>0$, I am not so sure if it can be easily extended to $\mathfrak{Re}(x)\geq 0$. So my solution is not a solution per se, but a hint of a formula which should be proved.

Kolja
  • 3,033
  • 1
    Thank you for the answer. The references are great to read. Math is a bit over my head. But great to search/google/explore some of the many paths. – Vincent Preemen Feb 10 '23 at 09:56