The question is a simplified question to my last question.
Let $I_m$ denote the $m\times m$ identity matrix, and $\alpha\in\mathbb{R}^{n-1}$.
Let $$ \mathbf{B}=\left[\begin{array}{ccccc} -\alpha & 0 & & &\\ \alpha & -\alpha & 0 & \\ 0 & \alpha & \ddots & \ddots \\ & & & & &-\alpha\\ \end{array}\right]\in \mathbb{R}^{(mn-m)\times (m-1)} $$
I want to calculate the largest eigenvalue of $$ \left[\begin{array}{ccccc} I_{mn-m} & B \\ B^{\top} & I_{m-1} \end{array}\right]. $$
The answer should be $\sim3- O(\frac{1}{n m^2})$, but I want to know the exact value.