I'm trying to prove Robbin's inequality: $$ n! \le \sqrt{2 \pi n}(n/e)^n e^{1/(12n)}. $$ Step 1: I start from the integral formulation \begin{align} n! = \int_0^\infty x^n e^{-x} dx &= (n/e)^n\int_0^\infty (x/n)^n e^{n-x} dx \\&= (n/e)^n\int_{-n}^\infty (1+x/n)^n e^{-x} dx \\&= (n/e)^n\int_{-n}^\infty \exp[-x + n\log(1+x/n)] dx \\&= (n/e)^n n \int_{-1}^\infty \exp[-x n + n\log(1+x)] dx. \end{align} Step 2: I want to use Laplace's method, so I pull out Taylor's theorem $$ \log(1+x)=x - x^2/2 + \frac{2}{(1 + \xi_x)^3}x^3/6, $$ where $\xi_x \in [-x,x]$. (Here we used $\frac{d^3\log(1+x)}{dx^3}=\frac{2}{(1+x)^3}$.)
Step 3: I split the integral into segments: $[-1, 0]$, $[0, L]$ and $[L, \infty)$. In the first interval I guess I should use $\xi_x=-1$, but actually we know $\log(1+x)\le x - x^2/2$, so we don't really need Taylor's theorem. (Good, since we would have had a zero divisor.) In the interval $[0,L]$ we set $\xi_x=0$ since $x^3>0$. Finally in $[L,\infty)$ in use a simple linear bound: $$\log(1+x) \le \log(1+L) + \frac{x-L}{1+L}$$ since $\log(1+x)$ is a concave function. (We have $f(x) \le f(L) + (x-L)f'(L)$ for any concave function and constant $L$.)
Step 4: I now do the integrals:
Integral one from $-1$ to $0$: \begin{align} \int_{-1}^0 \exp[-x n + n\log(1+x)] dx &\le \int_{-1}^0 \exp[-nx^2/2] dx \end{align}
Integral two from $0$ to $L$: \begin{align} \int_{0}^L \exp[-x n + n\log(1+x)] dx &\le \int_{0}^L \exp[-nx^2/2 + nL^3/3] dx \\&= e^{nL^3/3} \int_{0}^L \exp[-nx^2/2] dx \end{align}
Integral from $L$ to $\infty$: \begin{align} \int_{L}^\infty \exp[-x n + n\log(1+x)] dx &\le\int_{L}^\infty \exp[n \log(1+L) - n(1+x)L/(1+L)] dx \\&\le(1+L)^n \int_{L}^\infty \exp[- n(1+x)L/(1+L)] dx \\&=(1+L)^n e^{-L n} \frac{1+L}{L n} \\&\le \exp(-n L^2/2 + n L^3/3) \frac{1+L}{L n}. \end{align}
Step 5: Combine the integrals. First combining (1) and (2): \begin{align} \int_{-1}^0 \exp[-nx^2/2] dx +e^{nL^3/3} \int_{0}^L \exp[-nx^2/2] dx &\le e^{nL^3/3} \int_{-1}^L \exp[-nx^2/2] dx \\&\le e^{nL^3/3} \int_{-\infty}^\infty \exp[-nx^2/2] dx \\&= e^{nL^3/3} \sqrt{2\pi/n}. \end{align}
Then combining (1) and (2) with (3): \begin{align} \int_{-1}^\infty \exp[-x n + n\log(1+x)] dx \le e^{nL^3/3}\left(\sqrt{2\pi/n} + \exp(-n L^2/2) \frac{1+L}{L n}\right) \end{align}
Step 6: Choose $L$.
I choose $L=n^{-2/3}$. Putting it all together we have shown $$ n! \le (n/e)^n \left( \sqrt{2\pi n} + (1+n^{2/3})e^{-n^{1/3}/2}\right) e^{1/(3n)}. $$
That is nearly the $(n/e)^n \sqrt{2\pi n} e^{1/(12n)}$ bound we wanted, but it is off by a factor $1/4$ in the error exponent, and we have that extra annoying $o(1)$ term added onto $\sqrt{2\pi n}$.
Question: How can I improve my proof? I would like to get the full strength of Robbins's inequality, ideally with similar methods. If there are any tricks I can use to make the derivation easier, I'm also very interested.
