I have a problem understanding how Yoneda Lemma gives a natural isomorphism between functors. Let $F,G \colon \mathcal{A}\to \mathcal{B}$ two functors and I have a bifunctorial isomorphism $\mathrm{Hom}(F(\cdot), \cdot) \cong \mathrm{Hom}(G(\cdot), \cdot)$. I want to prove that $F\cong G$.
For $A \in \mathcal{A}$ I have a functorial isomorphism $\mathrm{Hom}(F(A), \cdot) \cong \mathrm{Hom}(G(A), \cdot)$, and the Yoneda Lemma implies that $$\operatorname{Nat}(\mathrm{Hom}(F(A), \cdot), \, \mathrm{Hom}(G(A),\cdot)) \cong \mathrm{Hom}(G(A), F(A)) \,.$$ I will denote $\eta \colon \mathrm{Hom}(F(A), \cdot) \xrightarrow{\sim} \mathrm{Hom}(G(A), \cdot)$ the previous isomorphism, and then a natural transformation $\mathrm{Hom}(F(A),\cdot) \cong \mathrm{Hom}(G(A), \cdot)$ gives a unique mapping $G(A) \to F(A)$ given by $\eta_{F(A)}(\mathrm{id}_{F(A)})$. How I can prove that this collection of morphisms are a natural isomorphism $F \cong G$? (i.e., $\eta_{F(A)}(\mathrm{id}_{F(A)})$ is an isomorphism for every $A$ and these morphisms are naturals).