Let $X$ be a compact topological space and $(E, |\cdot|)$ a Banach space. Let $\mathcal C$ be the space of all continuous functions from $X$ to $E$. Let $\|\cdot\|_\infty$ be the supremum norm on $\mathcal C$. Then $(\mathcal C, \|\cdot\|_\infty)$ is a Banach space. We fix a continuous map $g:X \to (0, \infty)$ and define a new norm $[\cdot]$ on $\mathcal C$ by $$ [f] := \sup_{x\in X} g(x) |f(x)| \quad \forall f \in \mathcal C. $$
Because $X$ is compact and $g$ continuous, there are $c_1, c_2 >0$ such that $c_1 \le |g(x)| \le c_2$ for all $x \in X$. As such, $$ c_1 \|\cdot\|_\infty \le [\cdot] \le c_2 \|\cdot\|_\infty. $$
It follows that $[\cdot]$ is equivalent to $\|\cdot\|_\infty$. Hence $(\mathcal C, [\cdot])$ is a Banach space.
Could you confirm if my above understanding is correct?