Let $a$, $b$, and $c$ be elements of a field $F$, and let $A$ be the following $3\times 3$ matrix over $F$: $$A=\begin{bmatrix}0 & 0& c\\ 1& 0& b\\ 0& 1& a\\ \end{bmatrix}$$ Prove that the characteristic polynomial for $A$ is $x^3-ax^2-bx-c$ and that this is also the minimal polynomial for $A$.
My attempt: Characteristic polynomial function of $A$ is $f:F\to F$ such that $f(x)=\det (xI_3-A)$, $\forall x\in F$. It’s easy to check, $\det (xI_3-A)=x^3-ax^2-bx-c$. We claim $f$ is minimal polynomial of $A$. Proof: we need to show (1) $f$ is monic, (2) $f(A)=0$, (3) If $g\in F[x]$ and $g(A)=0$, then $3=\deg (f)\leq \deg (g)$. Property (3)$\iff$$\nexists g\in F[x]$ such that $\deg (g)\lt 3$ and $g(A)=0$. Clearly $f$ is monic. By Cayley–Hamilton theorem, $f(A)=0$. Assume towards contradiction, $\exists g\in F[x]$ such that $\deg (g)\leq 2$ and $g(A)=0$. Let $g=px^2+qx+r$. Since we assign degree to $g$, it is implicitly non zero. Then $g(A)=pA^2+qA+r=0$, i.e. $$\begin{bmatrix}0 & pc& pac\\ 0& pb& pab\\ p& pa& pb+pa^2\\ \end{bmatrix}+ \begin{bmatrix}0 & 0& qc\\ q& 0& qb\\ 0& q& qa\\ \end{bmatrix}+\begin{bmatrix}r & 0& 0\\ 0& r& 0\\ 0& 0& r\\ \end{bmatrix}=\begin{bmatrix}0 & 0& 0\\ 0& 0& 0\\ 0& 0& 0\\ \end{bmatrix}.$$ By definition of matrix addition, we have $p+0+0=0$, $0+q+0=0$, and $0+0+r=0$. So $p=q=r=0$ and $g=0$. Thus we reach contradiction. So $\nexists g\in F[x]$ such that $\deg (g)\lt 3$ and $g(A)=0$. Hence $f=x^3-ax^2-bx-c$ is minimal polynomial of $A$. Is my proof correct?