Let $\displaystyle I:=\int_0^{\tfrac{\pi}{2}}\log^2(\sin x) \mathrm{d}x$
$\displaystyle I=\int_0^{\tfrac{\pi}{4}}\log^2(\sin x) \mathrm{d}x+\int_{\tfrac{\pi}{4}}^{\tfrac{\pi}{2}}\log^2(\sin x) \mathrm{d}x$
In the second integral, set $u=\dfrac{\pi}{2}-x$,
$\displaystyle I=\int_0^{\tfrac{\pi}{4}}\log^2(\sin x) \mathrm{d}x+\int_{0}^{\tfrac{\pi}{4}}\log^2(\cos x) \mathrm{d}x$
$\displaystyle 2I=\int_0^{\tfrac{\pi}{4}}\Big(\log(\sin x)+\log(\cos x)\Big)^2 \mathrm{d}x+\int_0^{\tfrac{\pi}{4}}\Big(\log(\sin x)-\log(\cos x)\Big)^2 \mathrm{d}x$
$\displaystyle \int_0^{\tfrac{\pi}{4}}\Big(\log(\sin x)+\log(\cos x)\Big)^2 dx=\int_0^{\tfrac{\pi}{4}}\Big(\log(\sin(2x))-\log 2\Big)^2 \mathrm{d}x$
Consider the RHS and set $t=2x$,
$\displaystyle \int_0^{\tfrac{\pi}{4}}\Big(\log(\sin(2x))-\log 2\Big)^2 \mathrm{d}x=\dfrac{1}{2}I-\log 2 \int_0^{\tfrac{\pi}{2}}\log(\sin x)\mathrm{d}x+\dfrac{1}{2}\int_0^{\tfrac{\pi}{2}}(\log 2)^2\mathrm{d}x$
Since:
$\displaystyle \int_0^{\tfrac{\pi}{2}}\log(\sin x)\mathrm{d}x=-\dfrac{\pi}{2}\log 2$
$\displaystyle \int_0^{\tfrac{\pi}{4}}\Big(\log(\sin x)-\log(\cos x)\Big)^2 \mathrm{d}x=\dfrac{\pi^3}{16}$
It follows
$\displaystyle 2I=\dfrac{1}{2}I+\dfrac{\pi}{2}\log^2 2+\dfrac{\pi}{4}\log^2 2+\dfrac{\pi^3}{16}$
$\displaystyle I=\dfrac{1}{3}\left(\dfrac{3\pi}{2}\log^2 2+\dfrac{\pi^3}{8}\right)$
link– Sushil Nov 28 '22 at 01:37