Let's compute some determinants recursively. Surely there is some pattern in here that we can exploit.
$1\times 1$
\begin{equation}
|[1]| = 1
\end{equation}
$2\times 2$
\begin{align*}
\left|
\begin{bmatrix}
1 & 1\\
1 & 1
\end{bmatrix}
\right|
=0
\end{align*}
$3\times 3$ - expanding on the last row, then on the last column
\begin{align*}
\left|
\begin{bmatrix}
1 & 1 & 0\\
1 & 1 & 1\\
0 & 1 & 1
\end{bmatrix}
\right|
&=
(-1)
\left|
\begin{bmatrix}
1 & 0\\
1 & 1\\
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1\\
1 & 1\\
\end{bmatrix}
\right| \\
&=
(-1)(1)
\left|
\begin{bmatrix}
1
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1\\
1 & 1\\
\end{bmatrix}
\right| \\
&=
-1 + 0 = -1
\end{align*}
$4\times 4$ - expanding on the last row, then on the last column
\begin{align*}
\left|
\begin{bmatrix}
1 & 1 & 0 & 0\\
1 & 1 & 1 & 0\\
0 & 1 & 1 & 1\\
0 & 0 & 1 & 1
\end{bmatrix}
\right|
&=
(-1)
\left|
\begin{bmatrix}
1 & 1 & 0\\
1 & 1 & 0\\
0 & 1 & 1
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\right|\\
&=
(-1)(1)
\left|
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}
\right|\\
&=
0+(-1) = -1
\end{align*}
$5\times 5$ - expanding on the last row, then on the last column
\begin{align*}
\left|
\begin{bmatrix}
1 & 1 & 0 & 0 & 0\\
1 & 1 & 1 & 0 & 0\\
0 & 1 & 1 & 1 & 0\\
0 & 0 & 1 & 1 & 1\\
0 & 0 & 0 & 1 & 1\\
\end{bmatrix}
\right|
&=
(-1)
\left|
\begin{bmatrix}
1 & 1 & 0 & 0\\
1 & 1 & 1 & 0\\
0 & 1 & 1 & 0\\
0 & 0 & 1 & 1\\
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{bmatrix}
\right|\\
&=
(-1)(1)
\left|
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{bmatrix}
\right|
+
(1)
\left|
\begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{bmatrix}
\right|\\
&=
1
+
(-1)
=
0
\end{align*}