Let us consider the integral operator $T:L^2(0,1)\to [0,\infty)$ such that for all $k\in L^2(0,1)$, $$ T(k)=\int_0^1 k_t^2e^{-2 \int_0^t k_s d s} d t. $$
Is the operator $T$ coercive in the $L^2$ sense, i.e., $ T(k)\to \infty$ as $|k|_{L^2}\to \infty$?
Let us assume without loss of generality that $k_t\ge 0$ for all $t$. If we employ the rough estimate: $$ T(k)\ge \int_0^1 k_t^2 d t e^{-\int_0^1 2k_s\, d s}\ge |k|^2_{L^2} e^{-2|k|_{L^2}}, $$ then it seems to indicate that the functional is not coercive, as $|k|_{L^2} \exp(- 2|k|_{L^2})$ tends to zero as $|k|_{L^2}\to \infty$.
However, the above inequality is a quite poor lower bound. In fact, if we consider the sequence of functions $(k^n)_{n\in \mathbb{N}}$ where for each $n\in \mathbb{N}$, $k^n=\alpha_n/2$ on $[0,1/n]$ and zero otherwise, then $|k^n|^2_{L^2}=\alpha_n^2//4n$, and a direct computation shows that $$ T(k^n)\sim \alpha_n (1-e^{-\alpha_n/n}), \quad n\in \mathbb{N}, $$ and hence $\lim_{n\to \infty}\alpha_n^2/n=\infty$ indeed implies $\lim_{n\to \infty} T(k^n) = \infty$.
I feel I am closer to prove that the claim is false. Consider $k_t=(1-t)^{-1}$ for all $t\in (0,1)$. Note that $k\not \in L^1(0,1)$. A direct computation shows that $ \int_0^t k_s d s =-\ln (1-t)$ and hence $$ T(k)=\int_0^1 (1-t)^{-2}e^{2\ln (1-t)} d t=1. $$ So if I could find a sequence of $(k^n)_{n\in \mathbb{N}}$ approaching $k$ with $\sup_{n\in \mathbb{N}} T(k^n)<\infty$ then I may get a counterexample.