Consider $\textbf{A} = exp(t\textbf{X})$ where $t \in \mathbb{R}$, $\textbf{X}, \textbf{A} \in \mathbb{R}^{n\times n}$ and $exp: \mathbb{R}^{n\times n} \rightarrow \mathbb{R}^{n\times n}$ is the matrix exponential. If we restrict $\textbf{X}$ to real-valued symmetric matrices, such that $\textbf{X}$ is diagonalizable and and $\textbf{A}$ is symmetric positive definite, is there a closed form of $\frac{d \textbf{A}}{d \textbf{X}}$?
Note that I am aware of the question here (Derivative of matrix exponential w.r.t. to each element of the matrix) but I believe my more restricted case of symmetric $\textbf{X}$ may yield a simpler and more concise solution.