1

Let $A\in[0,1]^{n\times n}$ be row stochastic matrix. Let $\gamma \in(0,1)$ be arbitrary. Then how can I prove that $(I-\gamma A)^{-1}$ (where $I$ is the identity matrix) exists?

1 Answers1

4

If $(I- \gamma A)x=0$, then $Ax= \frac{1}{\gamma}x.$ Now suppose that $x \ne 0$, then $\frac{1}{\gamma}$ is an eigenvalue of $A$. Since $A$ is a row stochastic matrix, $\frac{1}{\gamma} \le 1,$ a contradiction. Thus $x=0.$ Hence $I- \gamma A$ is invertible.

Fred
  • 78,422