Weierstrass's $\Gamma(1+z)=z\Gamma(z)=e^{-\gamma z}\prod_{n=1}^\infty(1+z/n)^{-1}e^{z/n}$ gives, for $\color{red}{|z|<1}$, $$\log\Gamma(1+z)=-\gamma z+\sum_{n=1}^\infty\left[\frac{z}{n}-\log\left(1+\frac{z}{n}\right)\right]
\\=-\gamma z+\sum_{n=1}^\infty\sum_{k=2}^\infty\frac1k\left(-\frac{z}{n}\right)^k=-\gamma z+\sum_{k=2}^\infty\zeta(k)\frac{(-z)^k}{k}.$$
The even part of this series (that is, the sum of terms with even $k$) is then $$\frac12\big(\log\Gamma(1+z)+\log\Gamma(1-z)\big)=\frac12\log\frac{\pi z}{\sin\pi z}$$ by the reflection formula, hence $\log\Gamma(1+z)$ is this quantity plus the odd part: $$\log\Gamma(1+z)=-\gamma z+\frac12\log\frac{\pi z}{\sin\pi z}-\sum_{k=1}^\infty\zeta(2k+1)\frac{z^{2k+1}}{2k+1}.$$