1

Came across the classical result where seemingly plain problem of circle deformation leads to elliptic integrals. Wanted to derive the relation of the semi-axes of the deformed circle (ellipse, after that).

Say, we have a circle as described below: \begin{cases} x = r \sin \theta \\ y = r \cos \theta \end{cases}

which has perimeter of $L = 2 \pi r $.

After plastic deformation we shall have the ellipse as described below: \begin{cases} x = a \sin \theta \\ y = b \cos \theta \end{cases}

with the same perimeter $L$.

Defining $L$ of the deformed circle (now ellipse) will lead us to the following relation: $$L = \int_{0}^{2\pi} \sqrt{ \left(\frac{d(a \sin \theta)}{d \theta}\right)^2 + \left(\frac{d(b \cos \theta)}{d \theta}\right)^2} \,d \theta = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \, d \theta = 4 a \int_{0}^{\frac{\pi}{2}} \sqrt{1-\left(1 - \frac{b^2}{a^2}\right) \sin^2 \theta} \, d \theta % = 4 a E(k) = 2 \pi r. $$

After some manipulations, we may achieve the following relation where $b = f(a)$:

$$ \int_{0}^{\frac{\pi}{2}} \sqrt{1-\left(1 - \frac{b^2}{a^2}\right) \sin^2 \theta} \, d \theta = \frac{\pi r}{2 a} \implies \int_{\sin 0}^{\sin \frac{\pi}{2}} \sqrt{1-\left(1 - \frac{b^2}{a^2}\right) t^2} \, d \arcsin t = \frac{\pi r}{2 a} \implies \int_{0}^{1} \sqrt{\frac{1-\left(1 - \frac{b^2}{a^2}\right) t^2}{1 - t^2}} \, d t = \frac{\pi r}{2 a} \implies \int_{0}^{1} \sqrt{\frac{1-\left(1 - \frac{f^2(a)}{a^2}\right) t^2}{1 - t^2}} \, d t = \frac{\pi r}{2 a} $$

Question: Is there any chance of arriving at the form of $b = f(a)$?

Update: Added Important Notice That the Solution Was Retrieved from Wolfram Alpha Differentiated $L$ with respect to both $a$ and $b$ and re-assembled the differentials: $$ \begin{cases} \frac{\partial L}{\partial a} = \frac{\partial}{\partial a}4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \, d \theta \\ \frac{\partial L}{\partial b} = \frac{\partial}{\partial b}4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} \, d \theta \end{cases} \implies \begin{cases} \frac{\partial L}{\partial a} = \frac{4}{a^2 - b^2}\left( a^2 E \left(\sqrt{1 - \frac{b^2}{a^2}}\right) - b^2 K \left(\sqrt{1 - \frac{b^2}{a^2}}\right) \right) \\ \frac{\partial L}{\partial b} = 4 \frac{b}{a} \frac{a^2}{a^2 - b^2}\left( K \left(\sqrt{1 - \frac{b^2}{a^2}}\right) - E \left(\sqrt{1 - \frac{b^2}{a^2}}\right) \right) \end{cases} \implies $$ $$ \frac{\partial b}{\partial a} = \frac{ a^2 E \left(\sqrt{1 - \frac{b^2}{a^2}}\right) - b^2 K \left(\sqrt{1 - \frac{b^2}{a^2}}\right) }{ ab \left( K \left(\sqrt{1 - \frac{b^2}{a^2}}\right) - E \left(\sqrt{1 - \frac{b^2}{a^2}}\right) \right) } \underset{b = a \sqrt{1 - k^2}}{\implies} \frac{\partial a \sqrt{1 - k^2}}{\partial a} = \frac{ \frac{1}{\sqrt{1 - k^2}} E \left(k\right) - \sqrt{1 - k^2} K \left(k\right) }{ K \left(k\right) - E \left(k\right) } \implies \frac{\partial k}{\partial a} = \frac{2}{a k} - \left( \frac{2 K \left(k\right) - E \left(k\right) }{K \left(k\right) - E \left(k\right)} \right) \frac{k}{a} \underset{\text{According to Wolfram Alpha}}{\implies} C - \ln(a) = \int_{1}^{\sqrt{1 - \frac{b^2}{a^2}}} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta $$

Follow-Up to the Previous Update: Now that we have $C$ independent on both $a$ and $b$, we may determine it for the future use using extreme case where $b \to 0$.

$$ \begin{cases} \frac{\pi r}{2 a} = \lim_{b \to 0} {\int_{0}^{\frac{\pi}{2}} \sqrt{1-\left(1 - \frac{b^2}{a^2}\right) \sin^2 \theta} \, d \theta} \\ C - \ln(a) = \lim_{b \to 0} {\int_{1}^{\sqrt{1 - \frac{b^2}{a^2}}} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta} \end{cases} \implies \begin{cases} \frac{\pi r}{2 a} = \int_{0}^{\frac{\pi}{2}} \lim_{b \to 0} {\sqrt{1-\left(1 - \frac{b^2}{a^2}\right) \sin^2 \theta}} \, d \theta \\ C - \ln(a) = \int_{1}^{\lim_{b \to 0} {\sqrt{1 - \frac{b^2}{a^2}}}} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta \end{cases} \implies \begin{cases} \frac{\pi r}{2 a} = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^2 \theta} \, d \theta \\ C - \ln(a) = \int_{1}^{1} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta \end{cases} \implies \begin{cases} a = \frac{\pi r}{2} \\ C = \ln(\frac{\pi r}{2}) \end{cases} \implies \frac{\pi r}{2 a} = \exp{\left(\int_{1}^{\sqrt{1 - \frac{b^2}{a^2}}} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta\right)} $$

On the other hand, once $b \to a$, we have: $$ \int_{0}^{1} \frac{\zeta (E(\zeta) - K(\zeta))}{-2 \zeta^2 K(\zeta) + 2 K(\zeta) + \zeta^2 E(\zeta) - 2 E(\zeta)} \, d\zeta = \ln\left(\frac{2}{\pi}\right) $$

For the time being, I have not delved that deep into elliptic inverse functions, but already it looks daunting to see that there is an independent variable which depends on function from itself within the integral.

Please may someone offer any piece of advice to make these things more comprehensible?

Thank you in advance!

alphamu
  • 111
  • The result is a special function, see here: https://en.wikipedia.org/wiki/Elliptic_integral#Complete_elliptic_integral_of_the_second_kind – Intelligenti pauca Aug 11 '22 at 13:38
  • @Intelligentipauca, Thank you for the note! This relation has been beared in mind while making those manipulations above. However, I need to extract this $f(a)$ out of the above expression. Should it be like solving integral equation? – alphamu Aug 11 '22 at 13:46
  • No, 4aE(e)=2πa. A second-order inverse elliptic function in terms of e= eccentricity. – Narasimham Aug 11 '22 at 14:07
  • @Narasimham, thank you! Please rest assured I considered elliptic integrals while pondering on the matter, hence, the tag #elliptic-integrals used to mark this question. My point is to extract $f(a)$ out of $\int_{0}^{1} \sqrt{\frac{1-\left(1 - \frac{f^2(a)}{a^2}\right) t^2}{1 - t^2}} , d t = \frac{\pi r}{2 a}$. Any thought on how to do that would be highly appreciated. – alphamu Aug 11 '22 at 14:14
  • @Narasimham, do you mean using something like this? Then the following question would be - how? :-) – alphamu Aug 11 '22 at 14:22
  • See if this can be of help: https://math.stackexchange.com/questions/1123360/inverse-of-elliptic-integral-of-second-kind – Intelligenti pauca Aug 11 '22 at 14:43
  • @Intelligentipauca, thank you! That gives an avenue for further pondering indeed and is quite useful actually. Appreciate your help! – alphamu Aug 11 '22 at 15:13

1 Answers1

0

$$ 4 a E(e) = 2 \pi a;\quad E(e) =E( \sqrt{1-b^2/a^2})= \pi/2 ; $$

Inverse Jacobi functions

Inverse Elliptic functions

Narasimham
  • 42,260
  • Thank you for the pitch! Obviously, inverse Jacobi functions and inverse elliptic functions has a lot to do with this problem and are going to be quite handy while solving this. Please note, however, there is $r$ on the right side of the original statement: $4 a \int_{0}^{\frac{\pi}{2}} \sqrt{1-\left(1 - \frac{b^2}{a^2}\right) \sin^2 \theta} , d \theta = 4 a E( \sqrt{1 - \frac{b^2}{a^2}} ) = 2 \pi r.$ Thus, to the best of my understanding, plugging $r$ in place of $a$ on the right side of the equation alters the posed problem dramatically and may not lead to the desired result. – alphamu Aug 12 '22 at 07:34