Problem :
Determine a limit $$\lim_{x\to\infty}xe^{\sin x}$$
exists or not. If it exists, find a limit.
Since $-1\le \sin x \le 1$, I can say that $\displaystyle0<\frac{1}{e}\le e^{\sin x}\le e$.
Multiply $x$ both side, $\displaystyle0<\frac{x}{e}\le xe^{\sin x}\le ex$
Since $\displaystyle\lim_{x\to\infty} \frac{x}{e}=\infty$, I think $\displaystyle\lim_{x\to\infty}xe^{\sin x}=\infty$ also.
But, WA says it is indeterminate form :
Am I correct? or Am I wrong?
If I'm wrong, where did I make a mistake?

Limitfunction. You should consider sending in feedback so they can address it. – user170231 Aug 03 '22 at 20:22Limit[x Exp[Sin[x]], x -> Infinity]wrongly producesIndeterminate, even if you specifyDirection -> "FromBelow". – David Zhang Aug 04 '22 at 07:56