Let $\beta\in\mathbb{R}$. Solve
$$\left\{\begin{array}{l} y_{1}^{\prime}=y_{1}+\beta y_{2}+12 e^{x},\\ y_{2}^{\prime}=y_{2}+6 e^{x},\\ y_{1}(0)=1,\\ y_{2}(0)=-1. \end{array}\right.$$
Attempt:
The problem can be written as
$$\vec{y}'=\begin{pmatrix} 1 & \beta\\ 0 & 1\\ \end{pmatrix}\vec{y}+\begin{pmatrix} 12e^{x}\\ 6e^{x} \end{pmatrix}.$$
The solution to $\vec{y}'=\begin{pmatrix}1 & \beta\\0 & 1\\ \end{pmatrix}\vec{y}$ is given by
$$\vec{y}_{c}(x)=e^{xA}\vec{c}.$$
Since
$$A=\begin{pmatrix} 1 & \beta\\ 0 & 1\\ \end{pmatrix}=I_{2}+\beta\begin{pmatrix} 0 & 1\\ 0 & 0\\ \end{pmatrix},$$
It follows that
$$\begin{align*} &e^{xA}=e^{xI_{2}}e^{x\beta\begin{pmatrix} 0 & 1\\ 0 & 0\\ \end{pmatrix}}=\begin{pmatrix} e^{x} & e^{\beta x}\\ 1 & e^{x}\\ \end{pmatrix}\\ \implies&\vec{y}_{c}(x)=\begin{pmatrix} e^{x} & e^{\beta x}\\ 1 & e^{x}\\ \end{pmatrix}\vec{c}. \end{align*}$$
The particular solution is given by
$$\begin{align*} \vec{y}_{p}&=e^{xA}\int e^{-xA}\begin{pmatrix}12e^{x}\\6e^{x}\end{pmatrix}dx\\ &=e^{xA}\int \begin{pmatrix} e^{-x} & e^{-\beta x}\\ 1 & e^{-x}\\ \end{pmatrix}\begin{pmatrix}12e^{x}\\6e^{x}\end{pmatrix}dx\\ &=\begin{pmatrix} 6(x+2e^{x})e^{\beta x}+6e^{x}\left ( e^{\frac{x-\beta x}{1-\beta}}+2x \right ) \\ 6\left ( e^{\frac{x-\beta x}{1-\beta}}+2x \right )+6e^{x}\left ( x+2e^{x} \right ) \end{pmatrix}. \end{align*}$$
Therefore, the general solution is
$$\vec{y}(x)=e^{xA}\vec{c}+\begin{pmatrix} 6(x+2e^{x})e^{\beta x}+6e^{x}\left ( e^{\frac{x-\beta x}{1-\beta}}+2x \right ) \\ 6\left ( e^{\frac{x-\beta x}{1-\beta}}+2x \right )+6e^{x}\left ( x+2e^{x} \right ) \end{pmatrix}.$$
What is wrong with this? When I solve for $\vec{c}$ I get $\begin{pmatrix}-17\\-19\end{pmatrix}$, but when I compute $\vec{y}(0)$, I don't get $\begin{pmatrix}1\\-1\end{pmatrix}$.