The identity in question is
$\nabla (\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times\vec{B}) + \vec{B} \times (\nabla \times \vec{A}) + (A \cdot \nabla)\vec{B} + (\vec{B} \cdot \nabla) \vec{A}$
How do we prove that this is true?
which I found in a physics textbook (Griffiths, Electrodynamics).
My attempt is:
$\vec{A} = A_1\hat{i} + A_2\hat{j}$
$\vec{B} = B_1\hat{i} + B_2\hat{j}$
$\nabla (\vec{A}\cdot \vec{B}) = \nabla (A_1B_1 + A_2B_2)$
$=\nabla A_1 B_1 + A_1 \nabla B_1 + \nabla A_2 B_2 + A_2 \nabla B_2$
I would expect to see negative signs somewhere to be able to identify the result of some cross product. Terms such as $\nabla A_1$ are vectors, but I see no negative signs anywhere.