This question is successor of Primality test for numbers of the form (11^p−1)/10
Here is what I observed:
For $(10^p-1)/9$ :
Let $N$ = $(10^p-1)/9$ when $p$ is a prime number $p > 3$.
Let the sequence $S_i=S_{i-1}^{10}-10 S_{i-1}^8+35 S_{i-1}^6-50 S_{i-1}^4+25 S_{i-1}^2-2$ with $S_0=123$. Then $N$ is prime if and only if $S_{p-1} \equiv S_{0}\pmod{N}$.
I choose $123$ because this is the $10_{th}$ Lucas number $L_{10}$.
For the sequence, I choose the Lucas' polynomial $L_{10}(x)$ and alternate $+$ and $-$ for each part as shown in the sequence. (I don't know if these polynomials have a name).
For the test I use PARI/GP.
For example with $p = 19$ I found with PARI/GP:
Mod(123, 1111111111111111111)
Mod(959728737261142095, 1111111111111111111)
Mod(1087997224047968198, 1111111111111111111)
Mod(1083348694997563282, 1111111111111111111)
Mod(1039950736755546285, 1111111111111111111)
Mod(182325812441571117, 1111111111111111111)
Mod(579459289893901100, 1111111111111111111)
Mod(1068377107457264504, 1111111111111111111)
Mod(515160075503304980, 1111111111111111111)
Mod(429948940599801490, 1111111111111111111)
Mod(986618928768148932, 1111111111111111111)
Mod(588443728549357779, 1111111111111111111)
Mod(1031474122141075375, 1111111111111111111)
Mod(567090245602400840, 1111111111111111111)
Mod(76640950307142886, 1111111111111111111)
Mod(924987104665055322, 1111111111111111111)
Mod(374008108546502807, 1111111111111111111)
Mod(143266707375326409, 1111111111111111111)
Mod(123, 1111111111111111111)
And $1111111111111111111$ is indeed a prime number.
For $((10 \cdot 2^n)^p-1)/(10 \cdot 2^n-1)$ :
I tested some extensions with $(20^p-1)/19, (40^p-1)/39$ and $(80^p-1)/79$ and it seems the primality test works for example where $S_0=15127$, the $20_{th}$ Lucas number with the Lucas polynomial $L_{20}(x)$ still with $+$ and $-$ alternated.
Globally $L_{10 \cdot 2^n}$ for Lucas number and $L_{10 \cdot 2^n}(x)$ for Lucas polynomials with $+$ and $-$ alternated.
Is there a way to explain this? I try to prove it by myself but it's not easy. If you found a counterexample please tell me.