This seems oddly similar to an identity by the discoverer of the Catalan Numbers, Ming Antu, but I think the indices are shifted. They both seem to work. Per Pak's history in Stanley's Catalan Numbers, Ming Antu wrote:
$$ C_1=1, \ \ C_2=2, \ \ C_{n+1}= \sum_{k\ge 0} (-1)^k \binom{n+1-k}{k+1} C_{n-k} $$
That's slightly vague on the bounds, and unnecessarily excludes $C_1$ and $C_2$, so let's spiff up Ming Antu as:
\begin{equation}
C_0=1, \ \ C_{n+1}= \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n+1-k}{k+1} C_{n-k}
\end{equation}
I think it's easier to get as a matrix multiplication.
\begin{equation}
\begin{pmatrix}
C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_7
\end{pmatrix}
\!\!=\!\!
\begin{pmatrix}
\binom{1}{1} & . & . & . & . & . & . \\
. & \ \ \binom{2}{1} & . & . & . & . & . \\
. & -\binom{2}{2} & \ \ \binom{3}{1} & . & . &. & . \\
. & . & -\binom{3}{2}& \ \ \binom{4}{1} & . &. & . \\
. & . & \ \ \binom{3}{3} & -\binom{4}{2} & \ \ \binom{5}{1} &. & . \\
. & . & . & \ \ \binom{4}{3} & -\binom{5}{2} & \ \ \binom{6}{1} & . \\
. & . & . & -\binom{4}{4} & \ \ \binom{5}{3} & -\binom{6}{2} & \ \ \binom{7}{1} \\
\end{pmatrix}
\begin{pmatrix}
C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6
\end{pmatrix}
\end{equation}
Let's call the matrix $P$; we have $P_{rc}=(-1)^{r-c} \binom{c}{r-c+1}$ with zero for the binomial coefficients outside the usual range.
The Parsnip identity in question is:
$$\sum_{k=0}^n (-1)^k \binom{k+2}{n-k} C_k = 0\quad n\ge2$$
This generates binomial coefficients with top smaller than bottom, zero, which can probably be avoided but let that be Parsnip's problem. The last term is $(-1)^n \binom{n+2}{0} C_n= \pm C_n$ so we can view this as a recurrence similar to Ming Antu's. Let's sort terms and put them side by side as:
CatalanNumber = ParsnipIdentity = MingAntuRecurrence
\begin{align*}
C_2 &= -\binom{2}{2} C_0 + \binom{3}{1} C_1 &&= \binom{2}{1} C_{1}
\\
C_3 &= - \binom{3}{2}C_1 + \binom{4}{1}C_2 &&= - \binom{2}{2} C_1 + \binom{3}{1} C_2
\\
C_4 &= \binom{3}{3}C_1 - \binom{4}{2}C_2 - \binom{5}{1} C_3 &&= - \binom{3}{2} C_2+ \binom{4}{1} C_3
\\
C_5 &= \binom{4}{3}C_2 - \binom{5}{2} C_3 + \binom{6}{1} C_4 &&= \binom{3}{3} C_2 - \binom{4}{2} C_3 + \binom{5}{1} C_4
\end{align*}
Wow, it seems like there are two different ways to multiply that funky Pascal triangle matrix $P$ with the Catalans to get the Catalans. Ming Antu is:
$$[C_1, C_2, \ldots]^T = P [C_0, C_1, \ldots]^T$$
The Parsnip Identity is :
$$[?, ?, C_2, C_3, \ldots]^T = P [0, C_0, C_1, \ldots]^T$$
Interestingly, the actual result (transposed) is:
$$[0, C_0, C_1, \ldots] P^T = \left[\begin{matrix}0 & 2 & 2 & 5 & 14 & 42 & 132 & 429 & \ldots\end{matrix}\right]$$
so the two question marks don't give Catalans $C_{0}$ and $C_1$, which surprised me.
I suppose the obvious question is what happens if we prepend another zero? We get:
$$ [0, 0, C_0, C_1, \ldots] P^T =\left[\begin{matrix}0 & 0 & 3 & 1 & 5 & 14 & 42 & 132 & \ldots \end{matrix}\right]
$$
which gets the Catalans right starting at $C_3$.
We seem to be doing a matrix multiplication one column at a time. Let's say matrix $C$ is $C_{rc}=C_{r-c}$, with zeros for $r<c$:
$$C=\left[\begin{matrix}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\2 & 1 & 1 & 0 & 0 & 0 & 0 & 0\\5 & 2 & 1 & 1 & 0 & 0 & 0 & 0\\14 & 5 & 2 & 1 & 1 & 0 & 0 & 0\\42 & 14 & 5 & 2 & 1 & 1 & 0 & 0\\132 & 42 & 14 & 5 & 2 & 1 & 1 & 0\\429 & 132 & 42 & 14 & 5 & 2 & 1 & 1\end{matrix}\right]
$$
Let's try 12x12. $PC=$
$$\left[\begin{array}{cccccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\5 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\14 & 5 & 1 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\42 & 14 & 5 & -1 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\132 & 42 & 14 & 6 & -4 & 6 & 0 & 0 & 0 & 0 & 0 & 0\\429 & 132 & 42 & 14 & 9 & -8 & 7 & 0 & 0 & 0 & 0 & 0\\1430 & 429 & 132 & 42 & 13 & 15 & -13 & 8 & 0 & 0 & 0 & 0\\4862 & 1430 & 429 & 132 & 42 & 9 & 25 & -19 & 9 & 0 & 0 & 0\\16796 & 4862 & 1430 & 429 & 132 & 43 & -1 & 40 & -26 & 10 & 0 & 0\\58786 & 16796 & 4862 & 1430 & 429 & 132 & 48 & -21 & 61 & -34 & 11 & 0\\208012 & 58786 & 16796 & 4862 & 1430 & 429 & 131 & 63 & -56 & 89 & -43 & 12\end{array}\right]
$$
Each subsequent column is shifted down by 1 and is correct one entry later.
The diagonal under the main diagonal, index $(n+2,n+1)$ (2,2,1,-1,-4,-8,-13, ...) is $2-\binom{n}{2} = (-n^2+n+4)/2 $.
It's a whole family of Catalan recurrences that only work after a while. Maybe there are some previous Catalan numbers $C_{-1}$ etc. that make it work.
If we look at Parsnip as $[C_0, C_1, C_2, C_3, \ldots]^T = P [C_{-1}, C_0, C_1, \ldots]^T$, we get $C_0 = C_{-1}, C_1=2 C_0$; the latter equation is definitely false, so I don't think there's any fixing this.
OK, I haven't proven anything here, but this is a fairly interesting conjecture; for $n\ge 0$:
$$ [\underbrace{?,?,?, \ldots, ?}_{2n \text{ question marks}}, C_{n+1}, C_{n+2}, \ldots]^T = P [ \underbrace{0, \ldots, 0}_{n \text{ zeros}}, C_0, C_1, \ldots]^T $$
where $P_{rc}=(-1)^{r-c} \binom{c}{r-c+1}$ and $C_m$ is the $m$th Catalan number.