This question is the successor of Primality test for numbers of the form (3^p−1)/2
Here is what I observed:
Let $N$ = $(11^p-1)/10$ when $p$ is a prime number $p > 3$.
Let the sequence $S_i=S_{i-1}^{11}-11 S_{i-1}^9+44 S_{i-1}^7-77 S_{i-1}^5+55 S_{i-1}^3-11 S_{i-1}$ with $S_0=1956244$. Then $N$ is prime if and only if $S_{p-1} \equiv S_{0}\pmod{N}$.
I choose $1956244$ because this is one of the "seeds" for the test of Lucas–Lehmer and it seems it works with this "seed" (you can find the seeds for Lucas–Lehmer test at OEIS A018844) and this seed matches with the sequence when $S_0 = 4$, $S_1 = 1956244$. $4$ is the first seed of the Lucas–Lehmer test.
For the sequence, I choose the Chebyshev's polynomial $T_{11}(x)$ and divided each part by $2^{2n}$: $$\frac{1024}{1024}x^{11}-\frac{2816}{256}x^9+\frac{2816}{64}x^7-\frac{1232}{16}x^5+\frac{220}{4}x^3-\frac{11}{1}x.$$
For the test, I use PARI/GP.
For example with $p = 17$ I found with PARI/GP:
Mod(1956244, 50544702849929377)
Mod(15674474965388057, 50544702849929377)
Mod(44534929988004909, 50544702849929377)
Mod(28140092860411758, 50544702849929377)
Mod(15603700915052433, 50544702849929377)
Mod(37189226565807060, 50544702849929377)
Mod(20742285445093842, 50544702849929377)
Mod(44492854083486120, 50544702849929377)
Mod(17447547902277534, 50544702849929377)
Mod(45802288862695262, 50544702849929377)
Mod(35665546395277410, 50544702849929377)
Mod(14106987120477193, 50544702849929377)
Mod(8318528060373474, 50544702849929377)
Mod(47976595814239915, 50544702849929377)
Mod(30975975792991455, 50544702849929377)
Mod(47014797124698019, 50544702849929377)
Mod(1956244, 50544702849929377)
And $50544702849929377$ is indeed a prime number.
I checked until $p=5200$ and I didn't find any counterexample.
Is there a way to explain this? I don't know how to start for proving it, especially why $S_{p-1} \equiv S_{0}\pmod{N}$ implies that $N$ is prime (still by observation). If you found a counterexample please tell me.