Suppose $A, T, Q \in \mathbb{R}^{n \times n}$, $A=Q T Q^T$, $A$ and $Q$ are orthogonal. Then $T$ is orthogonal. We want to prove that if $T$ is quasitriangular, then it's quasidiagonal. This follows from the following theorem.
Theorem
Suppose
$$T=\begin{bmatrix}
B_{1,1} & B_{1,2} & \dots & B_{1,m} \\
& B_{2,2} & \dots & \vdots \\
& & \ddots & \vdots \\
& & & B_{m,m}
\end{bmatrix}$$
is a real orthogonal or complex unitary block matrix, where each $B_{i,i}$ is a $1 \times 1$ or a $2 \times 2$ matrix. Then for each $i$ for each $j>i$ we have $B_{i,j}=0$.
Proof of the theorem
Since T is orthogonal or unitary, we have $T^* T = I$, which can be visualized as
$$\begin{bmatrix}
B_{1,1}^* & & & \\
B_{1,2}^* & B_{2,2}^* & & \\
\vdots & \vdots & \ddots & \\
B_{1,m}^* & \dots & \dots & B_{m,m}^*
\end{bmatrix}
\cdot
\begin{bmatrix}
B_{1,1} & B_{1,2} & \dots & B_{1,m} \\
& B_{2,2} & \dots & \vdots \\
& & \ddots & \vdots \\
& & & B_{m,m}
\end{bmatrix}
=
\begin{bmatrix}
I&&& \\
&I&& \\
&&\ddots& \\
&&&I
\end{bmatrix}.
$$
Now we will prove by induction on $i$ that for each $i$, $B_{i,i}^*$ is invertible and for each $j > i$ we have $B_{i,j}=0$.
Base of induction: it can be seen from the structure of matrices in the equation above that $B_{1,1}^* B_{1,1} = I$ and thus $B_{1,1}^*$ is invertible, and that for each $j>1$, $B_{1,1}^* B_{1,j}=0$, which by invertibility of $B_{1,1}^*$ gives us $B_{1,j}=0$.
Inductive step. Suppose for each $i$ up to and including $k$, for each $j > i$ we have $B_{i,j}=0$. So, we have
$$\begin{bmatrix}
B_{1,1}^*&&&&&& \\
& \ddots &&&&& \\
&& B_{k,k}^* &&&& \\
&&&B_{k+1,k+1}^* & & & \\
&&&B_{k+1,k+2}^* & B_{k+2,2}^* & & \\
&&&\vdots & \vdots & \ddots & \\
&&&B_{k+1,m}^* & \dots & \dots & B_{m,m}^*
\end{bmatrix}
\cdot
\begin{bmatrix}
B_{1,1}&&&&&& \\
& \ddots &&&&& \\
&& B_{k,k} &&&& \\
&&&B_{k+1,k+1} & B_{k+1,k+2} & \dots & B_{k+1,m} \\
&&&& B_{k+2,k+2} & \dots & \vdots \\
&&&& & \ddots & \vdots \\
&&&& & & B_{m,m}
\end{bmatrix}
=
\begin{bmatrix}
I&&&&&& \\
&\ddots&&&&& \\
&&I&&&& \\
&&&I&&& \\
&&&&I&& \\
&&&&&\ddots& \\
&&&&&&I
\end{bmatrix}.
$$
From the structure of matrices in this equation we can see that $B_{k+1,k+1}^* B_{k+1,k+1} = I$, which means that $B_{k+1,k+1}^*$ is invertible, and that for each $j > k+1$ we have $B_{k+1,k+1}^* B_{k+1,j} = 0$, which by invertibility of $B_{k+1,k+1}^*$ gives us $B_{k+1,j}=0$. QED