Definition:
A random variable $X$ with $E[X]=0$ is called sub-exponential with parameters $(\nu,\alpha)$ iff for each $\lambda$ satisfying $|\lambda|<\frac{1}{\alpha}$, we have:
$$E[e^{\lambda X}]\le e^{\frac{\lambda^2 \nu^2}{2}} $$
We write this as $X\sim \mathrm{SE}(\nu,\alpha)$.
Question: Prove that if $X\sim\mathcal{N}(0,1)$, then $X^2-1\sim \mathrm{SE}(2,4)$.
My try:
We are trying to prove that for each $\lambda$ satisfying $|\lambda|<\frac{1}{4}$, we have: $$E[e^{\lambda (X^2-1)}]\le e^{{2\lambda^2}}$$
So, I tried to calculate $E[e^{\lambda (X^2-1)}]$ as follows: $$E[e^{\lambda (X^2-1)}]=\int_{-\infty}^{\infty} e^{\lambda (x^2-1)}\frac{1}{\sqrt{2\pi}} e^{-x^2/2}dx=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} e^{\lambda (x^2-1)} e^{-x^2/2}dx=\frac{1}{\sqrt{2\pi}}e^{-\lambda} \int_{-\infty}^{\infty} e^{x^2(\lambda-\frac{1}{2})}dx$$
It seems to me like I should somehow make the terms inside the integral similar to the probability density function (PDF) of a normal random variable. However, I'm stuck at this stage.
Any idea on how to proceed?