I am reading from multivariable calculus notes and need help with following:
Let $f : M(n,\mathbb{R}) \to M (n,\mathbb{R})$ and let $f(A)= AA^t$. Then find derivative of f, denoted by df .
So, Derivative of f (df) if exists, will satisfy $\lim H\to 0 \frac{||f(A+H) -f(A) -df(H)||}{||H||} =0$.
In these kind of questions how should I find what df(H) should be so that it has to be used to check the definition of derivative?
Should I go by guess work? What if there are more than 1 such df?