Not a complete answer, but a partial answer.
I've asked myself the same question before, but never found a complete solution, so I'd like to share my work on it in the hope that it might help someone. Since nobody has answered yet, I will also share the unfinished one. I hope that's ok.
My Work (the best of it)
Let's assume that $f$ has a Maclaurin Series of the general form $f\left( x \right) = \sum_{k = 0}^{\infty}\left( f_{k} \cdot \frac{x^{k}}{k!} \right)$ (Assumption $1.$) and that $f$ can be written as a Generalized Hypergeometric Function (I will abbreviate "Generalized Hypergeometric Function" in the following with the abbreviation "GHF".) of the form $f\left( x \right) = \operatorname{_{p}F_{q}}\left( \begin{matrix} A_{1},\, A_{2},\, \dots,\, A_{p}\\ B_{1},\, B_{2},\, \dots,\, B_{q} \end{matrix};\, x \right)$ (Assumption $2.$), then we could try the Frobenius Method. But before we do that, I would like to mention the nth derivative formula or nth integral formula for monomials that I used:
$$
\begin{align*}
\operatorname{D}_{x}^{n}~ \left( x^{m} \right) &= \frac{m!}{\left( m - n \right)!} \cdot x^{m - n}\\
\operatorname{I}_{x}^{n}~ \left( x^{m} \right) &= \frac{m!}{\left( m + n \right)!} \cdot x^{m + n} \tag{1.}\\
\end{align*}
$$
Rewrite it a bit:
$$
\begin{align*}
\operatorname{D}_{x}^{y\left( x \right)} \left( y\left( x \right) \right) &= f\left( x \right)\\
y\left( x \right) &= \operatorname{I}_{x}^{n}~ \left( f\left( x \right) \right)\\
\end{align*}
$$
Substitute $f\left( x \right) = \sum_{k = 0}^{\infty}\left( f_{k} \cdot \frac{x^{k}}{k!} \right)$:
$$
\begin{align*}
y\left( x \right) &= \operatorname{I}_{x}^{n}~ \left( f\left( x \right) \right)\\
y\left( x \right) &= \operatorname{I}_{x}^{n}~ \left( \sum_{k = 0}^{\infty}\left( f_{k} \cdot \frac{x^{k}}{k!} \right) \right)\\
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( f_{k} \cdot \frac{\frac{k!}{\left( k + y\left( x \right) \right)!} \cdot x^{k + y\left( x \right)}}{k!} \right)\\
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( f_{k} \cdot \frac{x^{k + y\left( x \right)}}{\left( k + y\left( x \right) \right)!} \right)\\
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( \frac{f_{k} \cdot x^{y\left( x \right)}}{\left( k + y\left( x \right) \right)!} \cdot x^{k} \right) \tag{2.}\\
\end{align*}
$$
We can rewrite formula $2.$ to the generalized series expansion $\sum_{k = 0}^{\infty}\left( c_{k} \cdot \frac{x^{k}}{k!} \right)$ (General Hypergeometric Series) of the GHF:
$$
\begin{align*}
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( \frac{f_{k} \cdot x^{y\left( x \right)}}{\left( k + y\left( x \right) \right)!} \cdot x^{k} \right)\\
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( \frac{f_{k} \cdot x^{y\left( x \right)} \cdot k!}{\left( k + y\left( x \right) \right)!} \cdot \frac{x^{k}}{k!} \right)\\
y\left( x \right) &= \sum_{k = 0}^{\infty}\left( c_{k} \cdot \frac{x^{k}}{k!} \right) \tag{3.}\\
\end{align*}
$$
If we try to simplify formula $3.$ series to a GHF, we can get:
$$
\begin{align*}
\frac{c_{k + 1}}{c_{k}} &= \frac{\frac{f_{k + 1} \cdot x^{y\left( x \right)} \cdot \left( k + 1 \right)!}{\left( k + 1 + y\left( x \right) \right)!}}{\frac{f_{k} \cdot x^{y\left( x \right)} \cdot k!}{\left( k + y\left( x \right) \right)!}}\\
\frac{c_{k + 1}}{c_{k}} &= \frac{f_{k + 1} \cdot x^{y\left( x \right)} \cdot \left( k + 1 \right)! \cdot \left( k + y\left( x \right) \right)!}{f_{k} \cdot x^{y\left( x \right)} \cdot k! \cdot \left( k + 1 + y\left( x \right) \right)!}\\
\frac{c_{k + 1}}{c_{k}} &= \frac{f_{k + 1} \cdot \left( k + 1 \right)}{f_{k} \cdot \left( k + 1 + y\left( x \right) \right)}\\
\frac{c_{k + 1}}{c_{k}} &= \frac{f_{k + 1}}{f_{k}} \cdot \frac{k + 1}{k + 1 + y\left( x \right)} \tag{4.}\\
\end{align*}
$$
Via the Assumption $2.$ that $f$ can be represented as a GHF of the form $f\left( x \right) = \operatorname{_{p}F_{q}}\left( \begin{matrix} A_{1},\, A_{2},\, \dots,\, A_{p}\\ B_{1},\, B_{2},\, \dots,\, B_{q} \end{matrix};\, x \right)$ it follows:
$$
\begin{align*}
\frac{f_{k + 1}}{f_{k}} &= \frac{\left( k + A_{1} \right) \cdots \left( k + A_{p} \right)}{\left( k + B_{1} \right) \cdots \left( k + B_{q} \right) \cdot \left( k + 1 \right)} \tag{5.1.}\\
f\left( x \right) &= \operatorname{_{p}F_{q}}\left( \begin{matrix}
A_{1},\, A_{2},\, \dots,\, A_{p}\\ B_{1},\, B_{2},\, \dots,\, B_{q}
\end{matrix};\, x \right) \tag{5.2.}\\
\end{align*}
$$
Via combining the formula $4.$ and the formula $5.1$ we get:
$$
\begin{align*}
\frac{c_{k + 1}}{c_{k}} &= \frac{f_{k + 1}}{f_{k}} \cdot \frac{k + 1}{k + 1 + y\left( x \right)}\\
\frac{c_{k + 1}}{c_{k}} &= \frac{\left( k + A_{1} \right) \cdots \left( k + A_{p} \right)}{\left( k + B_{1} \right) \cdots \left( k + B_{q} \right) \cdot \left( k + 1 \right)} \cdot \frac{k + 1}{k + 1 + y\left( x \right)}\\
\frac{c_{k + 1}}{c_{k}} &= \frac{\left( k + A_{1} \right) \cdots \left( k + A_{p} \right) \cdot \left( k + 1 \right)}{\left( k + B_{1} \right) \cdots \left( k + B_{q} \right) \cdot \left( k + 1 + y\left( x \right) \right) \cdot \left( k + 1 \right)}\\
\end{align*}
$$
We can combine all of this into a GHF:
$$
\begin{align*}
y\left( x \right) &= \operatorname{_{p + 1}F_{q + 1}}\left( \begin{matrix}
1,\, A_{1},\, A_{2},\, \dots,\, A_{p}\\ y\left( x \right) + 1,\, B_{1},\, B_{2},\, \dots,\, B_{q}
\end{matrix};\, x \right) \tag{6.}\\
\end{align*}
$$
Leonard Euler found the following Integral Transformation for this form of the GHF:
$$
\begin{align*}
\operatorname{_{A + 1}F_{B + 1}}\left[ \begin{matrix} c,\, a_{1},\, \dots,\, a_{A}\\ d,\, b_{1},\, \dots,\, b_{B}\\ \end{matrix};\, z \right] &= \frac{\Gamma\left( d \right)}{\Gamma\left( c \right) \cdot \Gamma\left( d - c \right)} \cdot \int_{0}^{1} t^{c - 1} \cdot \left( 1 - t \right)^{d - c - 1} \cdot \operatorname{_{A}F_{B}}\left[ \begin{matrix} a_{1},\, \dots,\, a_{A}\\ b_{1},\, \dots,\, b_{B}\\ \end{matrix};\, t \cdot z \right]\, \operatorname{d}t \tag{7.}\\
\end{align*}
$$
With the formula $6.$ and Eulers Integral Transformation (formula $7.$) we get:
$$
\begin{align*}
y\left( x \right) &= \frac{\Gamma\left( y\left( x \right) + 1 \right)}{\Gamma\left( 1 \right) \cdot \Gamma\left( y\left( x \right) + 1 - 1 \right)} \cdot \int_{0}^{1} t^{1 - 1} \cdot \left( 1 - t \right)^{y\left( x \right) + 1 - 1 - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t\\
y\left( x \right) &= \frac{\Gamma\left( y\left( x \right) + 1 \right)}{\Gamma\left( 1 \right) \cdot \Gamma\left( y\left( x \right) \right)} \cdot \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t\\
y\left( x \right) &= \frac{y\left( x \right)}{\Gamma\left( 1 \right)} \cdot \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t\\
\Gamma\left( 1 \right) &= \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t\\
1 &= \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t \tag{8.}\\
\end{align*}
$$
The best result I got was this:
$$\boxed{1 = \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t}$$
I don't know if everything I've done is correct, but I hope it can help or at least give an idea for a solution.
Edit
I just realized that we can simplify the formula $8.$ even further. Again using Assumption $2.$ that $f$ can be represented as a GHF of the form $f\left( x \right) = \operatorname{_{p}F_{q}}\left( \begin{matrix} A_{1},\, A_{2},\, \dots,\, A_{p}\\ B_{1},\, B_{2},\, \dots,\, B_{q} \end{matrix};\, x \right)$ and the relation $5.2.$, we can rewrite it as:
$$
\begin{align*}
1 &= \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot \operatorname{_{p}F_{q}}\left[ \begin{matrix} A_{1},\, \dots,\, A_{p}\\ B_{1},\, \dots,\, B_{q}\\ \end{matrix};\, t \cdot x \right]\, \operatorname{d}t\\
1 &= \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1} \cdot f\left( t \cdot x \right)\, \operatorname{d}t\\
\end{align*}
$$
So a better result I got is this:
$$\boxed{1 = \int_{0}^{1} \left( 1 - t \right)^{y\left( x \right) - 1}\ \cdot f\left( t \cdot x \right)\, \operatorname{d}t}$$