$$\large{\text{Motivation:}}$$
Here is a related Fresnel Integral sum for a seventh in a series of a sum of just a single function:
$$\large{\text{Original Problem and Definitions:}}$$
Here I will use the Normalized definition of the Fresnel F and G functions. They are the auxiliary functions which means they are used to prove properties about the Fresnel Integrals functions $\text C(x)$ and $\text S(x)$:
Here are the definitions with the problem:
$$\sum_{\Bbb N^0}( \text G(n)+i\text F(n))\\\mathop=^\text{def} i\sum_{n=0}^\infty \left[\left(\frac12-\int_0^n\sin\left(\frac{\pi n^2}{2}\right)dn\right) \cos\left(\frac{\pi n^2}{2}\right)- \left(\frac12-\int_0^n\cos\left(\frac{\pi n^2}{2}\right)dn\right) \sin\left(\frac{\pi n^2}{2}\right) \right] \\+\sum_{n=0}^\infty \left[\left(\frac12-\int_0^n\cos\left(\frac{\pi n^2}{2}\right)dn\right) \cos\left(\frac{\pi n^2}{2}\right)+ \left(\frac12-\int_0^n\sin\left(\frac{\pi n^2}{2}\right)dn\right) \sin\left(\frac{\pi n^2}{2}\right) \right] \\ = i\sum_{n=0}^\infty\left[\left(\frac12-\text S(n)\right) \cos\left(\frac{\pi n^2}{2}\right) -\left(\frac12-\text S(n)\right) \cos\left(\frac{\pi n^2}{2}\right)\right]\\+ \sum_{n=0}^\infty \left[\left(\frac12-\text C(n)\right) \cos\left(\frac{\pi n^2}{2}\right) +\left(\frac12-\text S(n)\right) \sin\left(\frac{\pi n^2}{2}\right)\right] $$
$$\large{\text{Visualization:}}$$
Here is a plot of the summand:

I am more interested in the following summations of which the Fresnel F sum diverges and the Fresnel F sum converges. Here are the sums up to thousands of terms:
$$\sum_0^\infty \text G(n)≈0.581217…$$ and $$\sum_0^\infty \text F(n)=\infty$$
$$\large{\text{Useful Identity:}}$$
but there is one nice result using DLMF $7.7.12$ proven true here
$$\sum_{n=0}^\infty \text G(n)+i \text F(n)=\sum_{n=0}^\infty e^{-\frac{i\pi n^2}2}\int_n^\infty e^{\frac{i\pi t^2}2}dt = \sum_{n=0}^\infty e^{-\frac{i\pi n^2}2}\left(\frac12+\frac i2-\text C(n)-i\text S(n)\right)\implies \sum_{n=0}^\infty \text G(n)= \text{Re}\sum_{n=0}^\infty e^{-\frac{i\pi n^2}2}\left(\frac12+\frac i2-\text C(n)-i\text S(n)\right)=\text{Re} \sum_{n=0}^\infty e^{-\frac{i\pi n^2}2}\left(\frac12+\frac i2\bigg)\bigg(1+i\text{erfi}\left((1+i)\frac{\sqrt\pi}2n\right)\right)$$
which can be put in terms of the Floor function or take the real part of the result and use Euler’s Formula
$$\large{\text{Integral Representation:}}$$
or try evaluating:
$$\sum_{n=0}^\infty \text F(n)=\frac1{\pi\sqrt2} \sum_{n=0}^\infty \int_0^\infty \frac{1}{\sqrt t (t^2+1) e^{\frac{\pi n^2 t}2}}dt= \frac1{\pi\sqrt 2} \int_0^\infty \frac{1}{\sqrt t (t^2+1)} \sum_{n=0}^\infty e^{-\frac{\pi n^2 t}2}dt = \frac1{2\sqrt2\pi}\int_0^\infty \frac{\vartheta_3\left(e^{-\frac{\pi t}2}\right)+1}{(t^2+1)\sqrt t}dt=\infty$$
which diverges.
$$\large{\text{Updated Problem:}}$$
So now our goal is: $$\sum_0^\infty \text G(n)$$ Here is an interesting and convergent integral. It has the increasing function of $\sqrt t$ in the numerator strangely making it converge:
$$\sum_{n=0}^\infty \text G(n)\mathop=^\text{def} \sum_{n=0}^\infty \left[\left(\frac12-\text C(n)\right) \cos\left(\frac{\pi n^2}{2}\right) +\left(\frac12-\text S(n)\right) \sin\left(\frac{\pi n^2}{2}\right)\right]=\frac1{\pi\sqrt2} \sum_{n=0}^\infty \int_0^\infty \frac{\sqrt t}{ (t^2+1)e^{\frac{\pi n^2 t}2}} dt= \frac1{\pi\sqrt 2} \int_0^\infty \frac{\sqrt t}{ (t^2+1)}\sum_{n=0}^\infty e^{-\frac{\pi n^2 t}2}dt = \frac1{2\sqrt2\pi}\int_0^\infty \frac{\sqrt t\left[\vartheta_3\left(e^{-\frac{\pi t}2}\right)+1\right]}{t^2+1}dt = \frac1{2\sqrt2\pi}\int_0^\infty \frac{\sqrt t\,\vartheta_3\left(e^{-\frac{\pi t}2}\right)}{t^2+1}dt+ \frac1{2\sqrt2\pi}\int_0^\infty \frac{\sqrt t}{t^2+1}dt = \frac1{2\sqrt2\pi}\int_0^\infty \frac{\vartheta_3\left(e^{-\frac{\pi t}2}\right)\sqrt t}{t^2+1}dt +\frac14$$
of which the partial sum has a closed form in terms of the special case Jacobi Theta functions of the Third Kind $\vartheta_3(0,x)=\vartheta_3(x)$ which can be put in terms of simpler elliptic functions.
$$\large{\text{Integrand Visualization:}}$$
Here is a plot of $\frac{\vartheta_3\left(e^{-\frac{\pi t}2}\right)\sqrt t}{t^2+1}$:
According to Wolfram Functions $9.3.3.6.1$, we can simplify to:
$$\boxed{\sum_0^\infty \text G(n)= \sum_{n=0}^\infty \left[\left(\frac12-\text C(n)\right) \cos\left(\frac{\pi n^2}{2}\right) +\left(\frac12-\text S(n)\right) \sin\left(\frac{\pi n^2}{2}\right)\right]= \frac1{2\sqrt2\pi}\int_0^\infty \frac{\vartheta_3\left(e^{-\frac{\pi t}2}\right)\sqrt t}{t^2+1}dt +\frac14 = \frac{\sqrt i}{2\sqrt2\pi}\int_0^\infty \frac{\vartheta_3\left(e^{-\frac{2i}t}\right)}{t^2+1}dt +\frac14 }$$
$$\large{\text{Conclusion}}$$
How can I evaluate the Normalized Fresnel G sum? If there is a closed form, then please write it, but it is optional. Please correct me and give me feedback!