Let $\Omega\subset\mathbb{R}^n$ be a bounded open set, $n\geq 2$. For $r>0$, denote by $B_r(x_0)=\{x\in\mathbb{R}^n:|x-x_0|<r\}$ whose closure is a proper subset of $\Omega$. Let $u\in W^{1,p}(\Omega)$ (the standard Sobolev space) for $1<p<n$ be a nonnegative, bounded function such that for every $\frac{1}{2}\leq\sigma^{'}<\sigma\leq 1$, we have \begin{equation} \sup_{B_{\sigma^{'}r}(x_0)}\,u\leq \frac{1}{2}\sup_{B_{\sigma r}(x_0)}\,u+\frac{c}{(\sigma-\sigma^{'})^{\frac{n}{q}}}\left(\frac{1}{|B_r(x_0)|}\int_{B_r(x_0)}u^q\,dx\right)^\frac{1}{q}\quad\forall q\in(0,p^{*}), \end{equation} where $c$ is some fixed positive constant,independent of $x_0,r$, $p^{*}=\frac{np}{n-p}$ and $|B_r(x_0)|$ denote the Lebsegue measure of the ball $B_r(x_0)$. Then by the iteration lemma stated below, we have \begin{equation} \sup_{B_{\frac{r}{2}}(x_0)}\,u\leq c\left(\frac{1}{|B_r(x_0)|}\int_{B_r(x_0)}u^q\,dx\right)^\frac{1}{q}\quad\forall q\in(0,p^{*}), \end{equation} where $c$ is some fixed positive constant,independent of $x_0,r$.
Iteration lemma: Let $f=f(t)$ be a nonnegative bounded function defined for $0\leq T_0\leq t\leq T_1$. Suppose that for $T_0\leq t<\tau\leq T_1$ we have $$ f(t)\leq c_1(\tau-t)^{-\theta}+c_2+\xi f(\tau), $$ where $c_1,c_2,\theta,\xi$ are nonnegative constants and $\xi<1$. Then there exists a constant $c$ depending only on $\theta,\xi$ such that for every $\rho, R$, $T_0\leq \rho<R\leq T_1$, we have $$ f(\rho)\leq c[c_1(R-\rho)^{-\theta}+c_2]. $$ Applying the iteration lemma with $f(t)=\sup_{B_t(x_0)}\,u$, $\tau=\sigma r$, $t=\sigma^{'}r$, $\theta=\frac{n}{q}$ in the given estimate on $u$ above, the second estimate on $u$ above follows. My question is can we obtain the following estimate \begin{equation} \sup_{B_r(x_0)}\,u\leq c\left(\frac{1}{|B_r(x_0)|}\int_{B_r(x_0)}u^q\,dx\right)^\frac{1}{q}\quad\forall q\in(0,p^{*}), \end{equation} which estimates the supremum of $u$ over the whole ball $B_r(x_0)$? If it is possible, does it follow by a covering argument? Here $c$ is some fixed positive constant, independent of $x_0,r$.
Thank you very mych.