Not a direct answer to the original post's question, but I have done a full write-up on deriving the vorticity transport equations. I go into more detail in my post, but I've copied the general gist of the derivation below:
Derivation
Incompressible conservation of momentum equations:
$$ \partial_t u_i + u_j \partial_j u_i = - \tfrac{1}{\rho} \partial_i p +
\nu \partial_j^2 u_i $$
To get vorticity evolution, we can take the curl of the momentum transport equations:
$$ \varepsilon_{k\ell i} \partial_\ell [\partial_t u_i + u_j
\partial_j u_i = - \tfrac{1}{\rho} \partial_i p + \nu \partial_j^2 u_i ]$$
Distributing this across the terms, we get:
$$ \begin{align}
\underbrace{\varepsilon_{k\ell i} \partial_\ell
\partial_t u_i}_\text{Temporal Term} +
\underbrace{\varepsilon_{k\ell i} \partial_\ell
u_j \partial_j u_i}_\text{Advection Term} & =
\underbrace{- \varepsilon_{k\ell i} \partial_\ell
\tfrac{1}{\rho} \partial_i p}_\text{Pressure Term} +
\underbrace{\varepsilon_{k\ell i} \partial_\ell
\nu \partial_j^2 u_i}_\text{Viscous Term} \\\\
\Rightarrow \quad \mathbb{T} + \mathbb{A} & = \mathbb{P} + \mathbb{V}
\end{align}$$
Temporal Term $\mathbb{T}$
$$\mathbb{T} = \varepsilon_{k\ell i} \partial_\ell \partial_t u_i \Rightarrow \ \partial_t \varepsilon_{k\ell i} \partial_\ell u_i \Rightarrow \ \partial_t \omega_k $$
Pressure Term $\mathbb{P}$
Since the curl of the gradient of a scalar is 0, $\mathbb{P} = 0$.
Viscous Term $\mathbb{V}$
$$ \mathbb{V} = \varepsilon_{k\ell i} \partial_\ell \nu \partial_j^2 u_i \Rightarrow \quad \nu \partial_j^2 \varepsilon_{k\ell i} \partial_\ell u_i \Rightarrow \quad \mathbb{V} = \nu \partial_j^2 \omega_k $$
Advection Term $\mathbb{A}$
$$ \mathbb{A} = \varepsilon_{k\ell i} \partial_\ell u_j \partial_j u_i $$
Using:
$$ u_j \partial_j u_i = \partial_i (\tfrac{1}{2} u_j u_j ) +
\varepsilon_{ijq} u_q (\underbrace{\varepsilon_{jmn} \partial_m u_n}_{\omega_j}) $$
get:
$$ \mathbb{A} = \varepsilon_{k\ell i} (\partial_i (\tfrac{1}{2} u_j u_j ) +
\varepsilon_{ijq} u_q \omega_j $$
For the lefthand term, note that $u_j u_j$ is just a scalar. Therefore, the
left expression can be surmised as the curl of the gradient of a scalar and it
is then equal to zero. This leaves us with:
$$\Rightarrow \ \mathbb{A} = \varepsilon_{k\ell i} \partial_\ell (
\varepsilon_{ijq} \omega_j u_q )
\Rightarrow \ \varepsilon_{ik\ell} \varepsilon_{ijq}
\partial_\ell \omega_j u_q$$
Plug:
$$ \varepsilon_{ik\ell} \varepsilon_{ijq} = \delta_{kj}\delta_{\ell q} -
\delta_{kq}\delta_{\ell j} $$
into previous expression:
$$ \mathbb{A} = (\delta_{kj}\delta_{\ell q} - \delta_{kq}\delta_{\ell j} )
\partial_\ell \omega_j u_q $$
$$ \Rightarrow \ \mathbb{A} = \partial_q \omega_k u_q - \partial_j \omega_j u_k \Rightarrow \ (u_q \partial_q \omega_k + \omega_k \partial_q u_q) -
( u_k \partial_j \omega_j + \omega_j \partial_j u_k)$$
By incompressibility $\partial_q u_q =0$. Also, $\partial_j \omega_j$ also equals zero:
$$ \Rightarrow \ \mathbb{A} = \underbrace{u_q \partial_q
\omega_k}_\text{Vorticity Advection} - \underbrace{\omega_j \partial_j
u_k}_\text{Vorticity Stretching} $$
Putting It All Together
$$
\underbrace{\partial_t \omega_k}_\mathbb{T} +
\underbrace{u_q \partial_q \omega_k - \omega_j \partial_j u_k}_\mathbb{A} =
\underbrace{0}_\mathbb{P} +
\underbrace{\nu \partial_j^2 \omega_k}_\mathbb{V}
$$