I will write the statement and then ask my query about part of the proof.
Statement Let $p$ be a rational prime. Let $K=\mathbb{Q}(\theta ) $ be a number field where $\theta $ is an algebraic integer. Suppose $p \nmid [\mathcal{O}_K : \mathbb{Z}[\theta ]] $. Let $$ \mu _{\theta }\equiv f_1^{e_1}...f_r^{e_r} \pmod{p} $$ where the polynomials $f_i \in \mathbb{Z}[x] $ are monic, irreducible modulo $p$ and pairwise coprime modulo p. Let $\mathfrak{p}_i =\langle p, f_i(\theta ) \rangle $.
These are all the assumptions needed for my question.
In the proof we let $J=p\mathbb{Z}[\theta ] +f_i(\theta )\mathbb{Z} [\theta ] $ and show that the map $$\phi : \mathbb{Z}[\theta ] /J \rightarrow \mathcal{O}_K / \mathfrak{p}_i , \\ \phi (g(\theta )+J) = g(\theta ) + \mathfrak{p}_i .$$
We show that $\phi $ is a surjective ring homomorphism but then we show that it is also injective since $\mathbb{Z}[\theta ] /J $ is a field. This means that $\ker \phi$ is trivial or is the whole field. The proof then somehow assumes that $\ker \phi $ is trivial.
My question is How do they assume or deduce that the kernel is trivial. Why can’t we have $\ker \phi = \mathbb{Z}[\theta ]/J $??
\pmod{p}to automatically get the space, the parentheses, and the roman typefacemod. Thepstands for "parenthetical". – Arturo Magidin Aug 19 '21 at 19:20