0

Could anyone please tell me if there's any formula or something similar to calculate the following series easily without using a calculator.

$$1.12+(1.12)^2+(1.12)^3+(1.12)^4+(1.12)^5+(1.12)^6+(1.12)^7+(1.12)^8+(1.12)^9$$

Russell
  • 171

2 Answers2

1

Let $S_{n}$ is a Geometrics series and $x= \frac{s_{i+1}}{s_{i}}, i= 0,1,2,...,9$, then $S_{9}=\frac{x-x^{n+1}}{1-x}=\frac{1.12-(1.12)^{10} }{1-1.12}=16.5487351$

0

A sum of form $\sum_{m=1}^n r^m = r+r^2+r^3+...+r^n$ can be found in the following way:

Let $S_n = \sum_{m=1}^n r^m$ be the $n$th partial sum. Note $rS_n = r^2+r^3+...r^{n+1}$. Then $rS_n -S_n = r^{n+1}+r^n+...+r^3+r^2-(r^n+r^{n-1}+...+r^2)-r=r^{n+1}-r$. So factoring the left side yields $S_n = \frac{r^{n+1}-r}{r-1}$. So in your example we'd have $\sum_{m=1}^9 (1.12)^m = \frac{1.12^{10}-1.12}{1.12-1}=16.549$.Your best chance for calculating $\frac{1.12^{10}-1.12}{1.12-1}$ without a calculator might be to use $1.12 = 1+\frac{3}{25} = \frac{28}{25}$ and expand to get a (big) rational number.

sendit
  • 328