I know that: $$\int_{-\infty}^0 Ai(x)dx = \frac{2}{3}, \qquad \int_0^{+\infty} Ai(x) dx = \frac{1}{3}$$ But I don't understand why according to DLMF are valid:
$$\int_{-\infty}^x Ai\left(t\right) dt = \pi \left[ Ai(x) Hi'(x) - Hi(x)Ai'(x) \right]$$
And: $$\int_{-\infty}^x Bi\left(t\right) dt =\pi\left[\mathrm{Bi}\left(x\right)\mathrm{Hi}'\left(x\right)-\mathrm{Bi}'% \left(x\right)\mathrm{Hi}\left(x\right)\right]. $$
Where Hi e Gi are the Scorer Functions: $$Hi\left(x\right) = \frac{1}{\pi} \int_0^{+\infty} e^{\left( xt - \frac{t^3}{3}\right)}dt$$ $$Gi\left(x\right) = \frac{1}{\pi} \int_0^{+\infty} sin \left(xt + \frac{t^3}{3} \right) dt$$ solutions of $$\frac{d^2f}{dz^2} - zf\left(z\right) = \pm\frac{1}{\pi}$$