Let $M$ be a symmetric positive semidefinite matrix of size $n \times n$. Randomly drop any number of off-diagonal elements by setting them to zero on both the upper and lower triangle (keeping symmetry). Is the resulting matrix still positive semidefinite?
For example: $$ \begin{pmatrix} 2.7732 & 0.670677 & 0.141774 \\ 0.670677 & 2.50917 & 0.393801 \\ 0.141774 & 0.393801 & 2.3329 \end{pmatrix} \rightarrow \begin{pmatrix} 2.7732 & 0.670677 & 0 \\ 0.670677 & 2.50917 & 0 \\ 0 & 0 & 2.3329 \end{pmatrix} $$ is still positive semidefinite. I observed this numerically by generating matrices following this algorithm, but it certainly may just be due to the distribution that those matrices came from.
The number of elements to drop on one of the sides is $r \in \{ 1, 2, \dots, n(n-1)/2 \}$.
Thanks