For each $r \in \mathbb R$ we let $$L_r := \left\{ \begin{pmatrix} a+cr \\ b+dr \\ c \\d \end{pmatrix} : a,b,c,d \in \mathbb Z \right\}, \quad W:= \left\{ \begin{pmatrix} 0 \\ 0 \\ x_3 \\ x_4 \end{pmatrix} : x_3,x_4 \in \mathbb R \right\} $$ and $$ L^*_r := L_r \setminus W.$$
Now we consider the series $$S(r):= \sum_{x \in L^*_r} E_1(2 (x_1^2+x_2^2)) \exp ( (x_1^2+x_2^2) - (x_3^2+x_4^2)).$$ Here $E_1 : (0, \infty) \to (0,\infty)$ is the exponential integral $$E_1(s):=\int_1^\infty \exp(-ts) \frac{dt}{t} = \int_s^\infty \exp(-t) \frac{dt}{t}.$$
My question: For which $r \in \mathbb R$ is $S(r)$ finite?
My partial answer: It's quite easy to see that $S(r)$ is fintie for $r \in \mathbb Q$. But that's all I've found out so far.
Happy: I would already be happy if you could show for a single $r \in \mathbb R \setminus \mathbb Q$ (you pick it!) whether $S(r)$ converges or diverges.
Some facts: We have $$ S(r) = \int_1^\infty \left( \sum_{x \in L^*_r} \exp \left( (1-2t)(x_1^2+x_2^2) - (x_3^2+x_4^2) \right)\right) \frac{dt}{t}.$$ Further, we have $L_r^*=L_r \setminus \{0\}$ iff $r \in \mathbb R \setminus \mathbb Q$.
Estimates for $E_1$:
In case they help: For $s>0$ we have $$\frac{e^{-s}}{s+1} < E_1(s) < \frac{s+1}{s+2} \frac{e^{-s}}{s} < \frac{e^{-s}}{s}.$$
Proof for rational $r$: Since I was asked in the comments to provide a proof for rational $r$ here it is. If $r$ is rational the set $$\{ a+br : a,b \in \mathbb Z \}$$ is a discrete subset of $\mathbb R$. Hence $$\varepsilon := \min(\{2(x_1^2+x_2^2) : x \in L_r^*\}) > 0$$ exists. Now we make use of $$E_1(s) \le \frac{\exp(-s)}{s}.$$ We have $$S(r) \le \sum_{x \in L^*_r} \frac{\exp(-2 (x_1^2+x_2^2))}{2 (x_1^2+x_2^2)} \exp ( (x_1^2+x_2^2) - (x_3^2+x_4^2))\\ \le \frac{1}{\varepsilon} \sum_{x \in L^*_r} \exp(-(x_1^2+x_2^2+x_3^2+x_4^2))\\ \le \frac{1}{\varepsilon} \sum_{x \in L_r} \exp(-||x||^2) < \infty. $$