As is mentioned in the comments, the proof you're looking is precisely the example in Evans that you've been referred to except with $p=2$. From what I understand, your issue is in the first line when Evans computes $ \frac d {dr} \big ( \frac 1 {r^{n-2}}\int_{B(0,r)} \vert Du \vert^2 d x\big ) $ and possibly integrating (10) over $B(0,r)$. The product rule for derivatives and polar coordinates (see Section C.3 Thm 4 (ii) in Evans) yield \begin{align}
\frac d {dr} \bigg ( {r^{2-n}}\int_{B(0,r)} \vert Du \vert^2 d x\bigg ) &= (2-n)r^{1-n}\int_{B(0,r)} \vert Du \vert^2 d x + r^{2-n}\frac d {dr} \int_{B(0,r)} \vert Du \vert^2 d x \\
&= \frac{2-n}{r^{n-1}}\int_{B(0,r)} \vert Du \vert^2 d x + \frac{1}{r^{n-2}} \int_{\partial B(0,r)} \vert Du \vert^2 d S \tag{1}
\end{align} which is the second line in Evans' computation. Setting $p=2$ in (10) in the same example gives \begin{align*}
\sum_{i=1}^n \big ( \vert Du\vert^2 x_i\big)_{x_i} &=2 \sum_{i=1}^n \bigg ( \bigg ( Du\cdot x + \frac{n-2}{2} u\bigg) u_{x_i} \bigg)_{x_i}
\end{align*} which can also be written as $$\mathrm{div} (\vert Du\vert^2x) = 2 \mathrm{div}\bigg ( \bigg ( \vert x \vert u_r + \frac{n-2}{2} u\bigg) Du \bigg ) $$ since $u_r = Du \cdot \frac x {\vert x \vert }$. Hence, the divergence theorem implies \begin{align}
r \int_{\partial B(0,r)}\vert Du\vert^2 d S &= \int_{\partial B(0,r)} \vert Du\vert^2(x \cdot \nu )d S \\
&= \int_{B(0,r)} \mathrm{div} (\vert Du\vert^2x) dx \\
&= 2 \int_{B(0,r)}\mathrm{div}\bigg ( \bigg ( \vert x \vert u_r + \frac{n-2}{2} u\bigg) Du \bigg ) dx\\
&= 2 \int_{\partial B(0,r)} \vert x \vert u_r ( Du \cdot \nu ) d S+ (n-2)\int_{\partial B(0,r)} u( Du \cdot \nu )dS \\
&= 2r\int_{\partial B(0,r)} u_r^2dS + (n-2)\int_{\partial B(0,r)} u\frac{\partial u}{\partial \nu}dS \\
&= 2r\int_{\partial B(0,r)} u_r^2dS + (n-2)\int_{ B(0,r)} \vert Du \vert^2 dx \tag{2}
\end{align} where the last line follow from the fact $u$ is harmonic. The above equality is again given in Evans. Substituting (2) into (1) gives \begin{align*}
\frac d {dr} \bigg ( {r^{2-n}}\int_{B(0,r)} \vert Du \vert^2 d x\bigg ) &= \frac{1}{r^{n-1}} \bigg( 2r\int_{\partial B(0,r)} u_r^2dS - r \int_{\partial B(0,r)}\vert Du\vert^2 d S \bigg ) + \frac{1}{r^{n-2}} \int_{\partial B(0,r)} \vert Du \vert^2 d S \\
&= \frac 2 {r^{n-2}}\int_{\partial B(0,r)} u_r^2dS \geqslant 0
\end{align*} as required.