Assuming $0<u<v$ and $w=\sqrt{u^2+v^2-2uv\cos\theta}$, combining the Gegenbauer expansions for half-integer orders here and here gives
\begin{align}
\frac{\exp iw}{w}&=\sum_{n=0}^{\infty}(2n+1)\mathsf{j}_{n}\left(v\right)(-\mathsf{y}_{n}\left(u\right)+i\mathsf{j}_{n}\left(u\right))P_{n}\left(\cos\theta\right)\\
&=i\sum_{n=0}^{\infty}(2n+1)\mathsf{j}_{n}\left(v\right)\mathsf{h}_{n}^{(1)}\left(u\right)P_{n}\left(\cos\theta\right)
\end{align}
The orthogonality of the Legendre polynomials reads
\begin{equation}
\int_{-1}^1P_n(x)P_{\ell}(x)\,dx=\frac{2}{2\ell+1}\delta_{\ell n}
\end{equation}
or
\begin{equation}
\int_0^\pi P_n(\cos\theta)P_{\ell}(\cos\theta)\sin\theta\,d\theta=\frac{2}{2\ell+1}\delta_{\ell n}
\end{equation}
The obtained identity is now projected on $P_\ell(\cos\theta)$ after multiplication by $\sin\theta$:
\begin{align}
\int_{0}^\pi \frac{\exp iw}{w}P_l(\cos\theta)\sin\theta\,d\theta=i\mathsf{j}_{\ell}\left(v\right)\mathsf{h}_{\ell}^{(1)}\left(u\right)
\end{align}
(only the term $n=\ell$ survives in the summation). Both sides of the above identity are continuous functions of $u$ and $v$, the obtained expression remains valid for $u=v$. Choosing $u=v=\alpha$, it writes
\begin{equation}
\int_{-1}^1 \frac{\exp i\alpha\sqrt{2}\sqrt{1-\cos\theta}}{\alpha\sqrt{2}\sqrt{1-\cos\theta}}P_l(\cos\theta)\sin\theta\,d\theta=2i\mathsf{j}_{\ell}\left(\alpha\right)\mathsf{h}_{\ell}^{(1)}\left(\alpha\right)
\end{equation}
Now, changing $\cos\theta=1-2t^2$ results in the following expression
\begin{equation}
\int_0^1 e^{2i\alpha t}P_\ell(1-2t^2)\,dt=i\alpha\mathsf{j}_{\ell}\left(\alpha\right)\mathsf{h}_{\ell}^{(1)}\left(\alpha\right)
\end{equation}
which is identical to the proposed identity.