In THIS ANSWER, I developed the Green (or Green's if you prefer) function, $G(\vec x|\vec y)$ for the $n$-dimensional Inhomogeneous Helmholtz equation,
$$\nabla^2 G_k(\vec x|\vec y)+k^2 G_k(\vec x|\vec y)=-\delta (\vec x-\vec y)\tag1$$
where $\delta(\vec x)$ is the Dirac Delta. Solution to $(1)$ can be written
$$G_k(\vec x|\vec y)=\frac i4 \left(\frac{k}{2\pi |\vec x-\vec y|}\right)^{n/2-1}H_{n/2-1}^{(1)}(k|\vec x-\vec y|)\tag2$$
where $H^{(1)}_{\alpha}(z)$ is the Hankel function of the first kind and order $\alpha$.
Using the same approach for the case $k=0$, we find the Green function for Poisson's equation, $\nabla^2 G_0(\vec x|\vec y)=-\delta(\vec x-\vec y)$ is given by
$$G_0(\vec x|\vec y)=\frac{\Gamma(n/2-1)}{4\pi^{n/2}|\vec x-\vec y|^{n-2}}\tag3$$
ASIDE DISCUSSION:
We could have arrived at $(2)$ by taking the limit as $k\to 0$ of $(2)$. To do so, we use the small argument (i.e., small $k|\vec r-\vec r'|$) approximation for the Hankel function of the first kind and order $n/2-1$, $n>2$, which is given by
$$H_{n/2-1}^{(1)}(k|\vec r-\vec r'|) = -i\frac{\Gamma(n/2-1)}{\pi} \left(\frac2{k|\vec r-\vec r'|}\right)^{n/2-1}+O(k^{n/2-1})\tag{A1}$$
Using $(A1)$ in $(2)$, we find that the small argument approximation for $G_k(\vec x|\vec y)$ for $n>2$ is given by
$$G_k(\vec x|\vec y)=\frac{\Gamma(n/2-1)}{4\pi^{n/2}|\vec x-\vec y|^{n-2}}+O(k^{n-2})\tag {A2}$$
If we let $k\to 0$ in $(A2)$, we see that solution to the $n$-dimensional Poisson Equation $\Delta G_0(\vec x|\vec y)=-\delta(\vec x-\vec y)$ is
$$G_0(\vec x|\vec y)=\frac{\Gamma(n/2-1)}{4\pi^{n/2}|\vec x-\vec y|^{n-2}}$$
Using $(3)$, we find the solution to Poisson's equation $\nabla^2 u(\vec x)=p(\vec x)$ can be written as
$$\begin{align}
u(\vec x)&=\int_{\mathbb{R}^n}p(\vec y)G(\vec x|\vec y)\,d^n\vec y\\\\
&=\int_{\mathbb{R}^n}p(\vec y)\frac{\Gamma(n/2-1)}{4\pi^{n/2}|\vec x-\vec y|^{n-2}} \,d^n\vec y\\\\
&=\int_{\mathbb{R}^n}p(\vec x+\vec y)\frac{\Gamma(n/2-1)}{4\pi^{n/2}|\vec y|^{n-2}} \,d^n\vec y
\end{align}$$
EXAMPLES:
Example $1$ ($n=3$):
For $n=3$, $\Gamma(n/2-1)=\pi^{1/2}$ and $G_0(\vec x|\vec y)=\frac{1}{4\pi |\vec x-\vec y|}$ is the familiar Green function and we have
$$\begin{align}
u(\vec x)&=\int_{\mathbb{R}^3}\frac{p(\vec y)}{4\pi |\vec x-\vec y|}\,d^3\vec y\\\\
&=\int_{\mathbb{R}^3}\frac{p(\vec x+\vec y)}{4\pi |\vec y|}\,d^3\vec y
\end{align}$$
Example $2$ ($n=4$):
For $n=4$, $\Gamma(n/2-1)=1$ and $G_0(\vec x|\vec y)=\frac{1}{4\pi^2 |\vec x-\vec y|^2}$ we have
$$\begin{align}
u(\vec x)&=\int_{\mathbb{R}^4}\frac{p(\vec y)}{4\pi^2 |\vec x-\vec y|^2}\,d^4\vec y\\\\
&=\int_{\mathbb{R}^4}\frac{p(\vec x+\vec y)}{4\pi^2 |\vec y|^2}\,d^4\vec y
\end{align}$$
Example $3$ ($n=5$):
For $n=5$, $\Gamma(n/2-1)=\sqrt\pi/2$ and $G_0(\vec x|\vec y)=\frac{1}{4\pi^2 |\vec x-\vec y|^2}$ we have
$$\begin{align}
u(\vec x)&=\int_{\mathbb{R}^4}\frac{p(\vec y)}{8\pi^2 |\vec x-\vec y|^3}\,d^5\vec y\\\\
&=\int_{\mathbb{R}^4}\frac{p(\vec x+\vec y)}{8\pi^2 |\vec y|^3}\,d^5\vec y
\end{align}$$