Consider a scalar conservation law $u_t+f(u)_x=0.$
A three point monotone scheme given by, \begin{eqnarray} u_i^{n+1}=u_i^{n}-\lambda (F(u_i^n,u_{i+1}^n)-F(u_{i-1}^n,u_i^n)) \end{eqnarray} where $F(u,u)=f(u).$
For a general entropy flux pair $(\eta,q)$ the discrete entropy condition is given by \begin{eqnarray} \eta(u_i^{n+1})-\eta(u_i^{n})+\lambda \left( Q(u_i^n,u_{i+1}^n)-Q(u_{i-1}^n,u_i^n)\right) \leq 0, \end{eqnarray} where $Q$ is the numerical entropy flux for the entropy flux pair $(\eta,q)$ which satisfies for every constant $k \in \mathbb{R}$ $$Q(u,u)=q(u)=\int\limits^u_k\eta'(s)f'(s)ds=\eta'(u)f(u)-\int\limits^u_k\eta''(s)f(s)ds.$$
If $\eta(u)=|u-k|$ then $q(u)=\operatorname{sgn}(u-k)(f(u)-f(k))$ and hence $Q(a,b)=f(\max(a,k))-f(\min(b,k))$ satisfies the discrete entropy inequality (see Theorem 4.2, Hyperbolic systems of conservation laws by Godlewski and Raviart).
I have the following questions.
- For a general $\eta$ does the numerical entropy flux exist?
- How to prove such a $Q$ satisfies the discrete entropy condition?