4

let $n$ be an integer with $n\ge 2$,Find the least postive real number $a$ such that $$(n-1)\sqrt{1+a\left(n\sum_{i=1}^{n}x^2_{i}-\left(\sum_{i=1}^{n}x_{i}\right)^2\right)}+\prod_{i=1}^{n}x_{i}\ge\sum_{i=1}^{n}x_{i}$$

I try let $$x_{1}=x_{2}=\cdots=x_{n-1}=x,x_{n}=0$$ then $$(n-1)\sqrt{1+a(n-1)x^2}\ge (n-1)x$$ $$\sqrt{1+a(n-1)x^2}\ge x$$ so $$\dfrac{1}{x^2}+a(n-1)\ge 1$$ let $x\to+\infty$,we have $$a\ge\dfrac{1}{n-1}$$ so I think the minumum of the value $a\ge\dfrac{1}{n-1}$. then I can't prove $$(n-1)\sqrt{1+\dfrac{1}{n-1}\left(n\sum_{i=1}^{n}x^2_{i}-\left(\sum_{i=1}^{n}x_{i}\right)^2\right)}+\prod_{i=1}^{n}x_{i}\ge\sum_{i=1}^{n}x_{i}$$ .Thanks

math110
  • 94,932
  • 17
  • 148
  • 519

1 Answers1

2

Problem: Let $n\ge 3$. Let $x_i \ge 0, \forall i$. Prove that $$(n-1)\sqrt{1+\dfrac{1}{n-1}\left(n\sum_{i=1}^{n}x^2_{i}-\left(\sum_{i=1}^{n}x_{i}\right)^2\right)} +\prod_{i=1}^{n}x_{i}\ge\sum_{i=1}^{n}x_{i}.$$

Proof:

By Vasc's Equal Variable Theorem [1, Corollary 1.8], we only need to prove the case when either $x_1 = 0$ or $0 < x_1 \le x_2 = x_3 = \cdots = x_n$.

  1. $x_1 = 0$:

It suffices to prove that $$(n-1)\sqrt{1+\dfrac{1}{n-1}\left(n\sum_{i=2}^{n}x^2_{i}-\left(\sum_{i=2}^{n}x_{i}\right)^2\right)} \ge\sum_{i=2}^{n}x_{i}$$ that is $$\frac{(n - 1)^2}{n} + (n - 1)\sum_{i=2}^{n}x^2_{i} \ge \left(\sum_{i=2}^{n}x_{i}\right)^2$$ which is true since $(n - 1)\sum_{i=2}^{n}x^2_{i} \ge \left(\sum_{i=2}^{n}x_{i}\right)^2$ by AM-QM.

  1. $0 < x_1 \le x_2 = x_3 = \cdots = x_n$:

Let $x_1 = a, x_2 = b$. It suffices to prove that, for all $0 < a \le b$, $$(n - 1)\sqrt{1 + (b - a)^2} + a b^{n - 1} \ge a + (n - 1) b$$ that is $$\frac{\sqrt{1 + (b - a)^2} - b}{a} \ge \frac{1 - b^{n - 1}}{n - 1}.$$

It is easy to prove that $x \mapsto \frac{1 - b^x}{x}$ is non-increasing on $[1, \infty)$. Thus, it suffices to prove the case when $n = 2$, that is $$\frac{\sqrt{1 + (b - a)^2} - b}{a} \ge 1 - b$$ which is true (easy to prove).

We are done.

Reference

[1] Vasile Cirtoaje, “The Equal Variable Method”, J. Inequal. Pure and Appl. Math., 8(1), 2007. https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf

River Li
  • 49,125
  • can you solve with out EV methods to it?because this is a exam problem – math110 Apr 13 '21 at 13:30
  • @inequality I think so. I think we just need to modify something (the idea is basically the same). If there is no nice solutions in the future, I will post it. – River Li Apr 13 '21 at 15:45