With modular definition in mind that two integers $a,b \in \mathbb{Z}$, are congruent module $m$ meaning that $a\equiv b \pmod{m}$, where $m$ is a positive integer.
Details:
- $x \equiv y \pmod{m}$ is by definition equivalent to $m|(x−y)$.
- $x \equiv y \pmod{m}$ , $x,y\in \mathbb{Z}, m \in \mathbb{Z^+}$ iff $a \pmod {m} = b \pmod{m}$.
- if $a | b$ and $a|c$, then $a|(b+c)$.
- if $a | b$ and $b|c$, then $a|c$.
- if $a | b$ then $a|bc$, for all integers $c$.
Question: Show that $ab \pmod{m} = ((a \pmod{m} )(b \pmod{m})) \mod m.$
ab\bmod m$\color{blue}{ab\bmod m}$ for $\bmod$ as a binary operation, anda\equiv b\pmod{m}$\color{blue}{a\equiv b\pmod{m}}$ for modular congruences;\moduses too much space. – metamorphy Mar 15 '21 at 13:37