47

If $S = x+x^{2}+x^{4}+x^{8}+x^{16}\cdots$

Find S.

Note:This is not a GP series.The powers are in GP.

My Attempts so far:

1)If $S(x)=x+x^{2}+x^{4}+x^{8}+x^{16}\cdots$

Then $$S(x)-S(x^{2})=x$$

2)I tried finding $S^{2}$ and higher powers of S to find some kind of recursive relation.

3)When all failed I even tried differentiating and integrating S.Obviously that was of no good either.

Could anyone give me a hint to solve this?Thanks!

Shaswata
  • 5,198

1 Answers1

34

I have worked on this series before.

There is no simple closed form as a geometric series has.

(such as $x+x^2+x^3+x^4+...=\frac{x}{1-x}$ where $|x|<1$).

You can see more information in the link about Lacunary function.

The series can be expressed in closed form of double integral. I shared my result below.

$x+x^{2}+x^{4}+x^{8}+\dots=F(x)$

Let's transform $x=e^{-2^t} \tag{1}$

Where $-\infty<t<\infty$ Thus x will be in $ (0,1)$ and $F(x)$ is not divergent in this range.

$e^{-2^t}+e^{-2^{t+1}}+e^{-2^{t+2}}+\dots=F(e^{-2^t})=H(t)$

$e^{-2^t}+H(t+1)=H(t)$

$H(t+1)-H(t)=-e^{-2^t}$


The Fourier transform of both sides

$$\int_{-\infty}^{+\infty} H(t+1)e^{-2πift} \mathrm{d}t-\int_{-\infty}^{+\infty} H(t)e^{-2πift} \mathrm{d}t=-\int_{-\infty}^{+\infty} e^{-2^{t}}e^{-2πift} \mathrm{d}t$$

$$V(f)= \int_{-\infty}^{+\infty} H(t)e^{-2πift} \mathrm{d}t$$

$$\int_{-\infty}^{+\infty} H(t+1)e^{-2πift} \mathrm{d}t=\int_{-\infty}^{+\infty} H(z)e^{-2πif(z-1)} \mathrm{d}z=V(f)e^{2πif}$$

$$e^{2πif}V(f)-V(f)=-\int_{-\infty}^{+\infty} e^{-2^{t}}e^{-2πift} \mathrm{d}t$$

$$V(f)=\int_{-\infty}^{+\infty} \frac{e^{-2^{t}}e^{-2πift}}{1-e^{2πif}} \mathrm{d}t$$


Now we need to take the inverse Fourier transform

$$H(z)=\int_{-\infty}^{+\infty} V(f) e^{2πifz} \mathrm{d}f=\int_{-\infty}^{+\infty} e^{2πifz}\int_{-\infty}^{+\infty} \frac{e^{-2^{t}}e^{-2πift}}{1-e^{2πif}} \mathrm{d}t\,\mathrm{d}f $$

The closed form of $H(z)$ in integral expression: $$H(z)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{2πifz} \frac{e^{-2^{t}}e^{-2πift}}{1-e^{2πif}} \mathrm{d}t\,\mathrm{d}f $$

$$\sum_{k=0}^\infty x^{2^k}=H(\log_2(-\ln x))=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{2πif\log_2(-\ln x)} \frac{e^{-2^{t}-2πift}}{1-e^{2πif}} \mathrm{d}t\,\mathrm{d}f$$

Where $0<x<1$

$$\sum_{k=0}^\infty x^{2^k}= \int_{-\infty}^{+\infty} \frac{e^{2πif\log_2(-\ln x)}}{1-e^{2πif}} \int_{-\infty}^{+\infty} e^{-2^{t}-2πift} \mathrm{d}t\,\mathrm{d}f=\int_{-\infty}^{+\infty} e^{-2^{t}} \int_{-\infty}^{+\infty} \frac{e^{2πif(\log_2(-\ln x)-t)}}{1-e^{2πif}} \mathrm{d}f\,\mathrm{d}t$$

Note: I made the update on 07/29/2016 . Variable change was $x=e^{2^t}$ at Tag (1) and it had problems as @leonbloy 's comment below. Thanks for the comment. Please let me know if you notice something else in definitions.

Mathlover
  • 10,256
  • Reminds ver much the Ramanajan's style in his sums and Chandrasekharan's approach (Diophantine) with trigonometric polynomials in number theory. Absolutely beautiful! See also Winogradow's work. What if the exponents would be negative? – al-Hwarizmi May 28 '13 at 07:14
  • 4
    I must be missing something. If $F(x)$ converges for $|x|<1$, $x=e ^{2^t}$, then $H(t)$ diverges for all $t$. – leonbloy May 28 '13 at 15:08
  • Wow, updated in the year 2016, you must really love this to be caring so late :D – Simply Beautiful Art Jan 12 '17 at 02:12
  • 2
    Is the last integral convergent?

    $$ \int_{-\infty}^{\infty}\frac{e^{2\pi i f (\log_2(-\ln(x))-t)}}{1-e^{2\pi i f}}df $$

    – Canjioh May 19 '20 at 14:49