I'm looking for a closed form of
$$\lim\limits_{m\to\infty}\left(\ln m-4\sum_{n=1}^{m}\frac{\left(-1\right)^{n}}{2n+1}\sum_{k=1}^{2n}\left(-1\right)^{k}k\ln k\right)\approx-0.092$$
for even $m$.
(For context this is a continuation of my ongoing work from this answer.)
Here's what I've tried so far. Wolfram alpha gives gives me
$$\sum_{k=1}^{2n}\left(-1\right)^{k}k\ln k=-2\zeta^{(1,0)}\left(-1,n+\frac{1}{2}\right)+2\zeta^{(1,0)}\left(-1,n+1\right)+n\ln2+3\ln A-\frac{1}{12}\ln2-\frac{1}{4}$$
From Wolfram's function site I get
$$\zeta^{(1,0)}(-1,x)=-\frac{1}{12}\left(-6x^{2}+18x-12\left(x-1\right)\ln\left(x-1\right)+12\ln A+6\left(x-1\right)\ln2\pi-13\right)+\psi^{(-2)}\left(x-1\right)$$
Combining these gets me
$$\sum_{k=1}^{2n}\left(-1\right)^{k}k\ln k=-2\psi^{(-2)}\left(n-\frac{1}{2}\right)+2\psi^{(-2)}\left(n\right)-\left(2n-1\right)\ln\left(n-\frac{1}{2}\right)+2n\ln n+n+n\ln2-\frac{1}{2}\ln2\pi+3\ln A-\frac{1}{12}\ln2-1$$
I could keep trying to find more expressions, but it feels like this is making things more complicated and possibly going to bring me back where I started.