The ODE $xy'' + y = 0$ has a real degeneracy. Use The Method Of Frobenius to find a fundamental set of solutions.
Here is the procedure, as I understand it:
1) Plug the guess $y = x^s \sum_{n = 0}^\infty a_n x^n$ into the ODE and do the algebra/calculus to separate out the indicial equation and the recurrence relation.
$xy'' + y = 0$
$x(x^s \sum_{n = 0}^\infty a_n x^n)'' + (x^s \sum_{n = 0}^\infty a_n x^n) = 0$
$\sum_{n = 0}^\infty (n + s)(n + s - 1) a_n x^{n + s - 1} + \sum_{n = 0}^\infty a_n x^{n + s} = 0$
$\sum_{n = 0}^\infty (n + s)(n + s - 1) a_n x^{n + s - 1} + \sum_{n = 1}^\infty a_{n - 1} x^{n + s - 1} = 0$
$s(s - 1) a_0 x^{s - 1} + \sum_{n = 1}^\infty (n + s)(n + s - 1) a_n x^{n + s - 1} + \sum_{n = 1}^\infty a_{n - 1} x^{n + s - 1} = 0$
$s(s - 1) a_0 x^{s - 1} + \sum_{n = 1}^\infty (n + s)(n + s - 1) a_n x^{n + s - 1} + a_{n - 1} x^{n + s - 1} = 0$
$s(s - 1) a_0 x^{s - 1} + \sum_{n = 1}^\infty [(n + s)(n + s - 1) a_n + a_{n - 1}] x^{n + s - 1} = 0$
Indicial Equation: $s(s - 1) = 0$
Recurrence Relation: $(n + s)(n + s - 1) a_n + a_{n - 1} = 0$, where $n \geq 1$
2) Solve the recurrence relation, treating $s$ as a constant, but without plugging in any indicial equation solutions.
$(n + s)(n + s - 1) a_n + a_{n - 1} = 0$
$a_n = -\frac{1}{(n + s)(n + s - 1)}a_{n - 1}$
$a_n = a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)}$
Here I would simplify using a formula I was given, $\Pi_{j = c}^d (j + k) = \frac{(d + k)!}{(c + k - 1)!}$.
$a_n = a_0 [\Pi_{m = 1}^n -1] [\frac{1}{\Pi_{m = 1}^n (m + s)}] [\frac{1}{\Pi_{m = 1}^n (m + s - 1)}]$
$a_n = a_0 [(-1)^n] [\frac{1}{\frac{(n + s)!}{s!}}] [\frac{1}{\frac{(n + s - 1)!}{(s - 1)!}}]$
$a_n = \frac{(-1)^n s! (s - 1)!}{(n + s)! (n + s - 1)!} a_0$
3) To find one fundamental solution, plug the largest indicial equation solution $s_1$ and its associated recurrence relation solution into the guess, and make the particular choice $a_0 = 1$.
$s(s - 1) = 0$
$s = 0, 1$
$s_1 = 1$
$y = x^1 \sum_{n = 0}^\infty \frac{(-1)^n 1! (1 - 1)!}{(n + 1)! (n + 1 - 1)!} 1 x^n$
$y = \sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1}}{n! (n + 1)!}\leftarrow$ FIRST FUNDAMENTAL SOLUTION
4) To find another fundamental solution, plug the other indicial equation solution $s_2$ and its associated recurrence relation solution into $y = [$FIRST FUNDAMENTAL SOLUTION$]ln|x| +\ x^{s_2} \sum_{n = 0}^\infty [\frac{\partial}{\partial s} ((s - s_2)a_n)]_{s = s_2} x^n$, and make the particular choice $a_0 = 1$.
$s_2 = 0$
Here I use the earlier, less simplified expression for $a_n$ which is in $\Pi$ product notation, in anticipation of taking the logarithmic partial derivative.
$y = (\sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1}}{n! (n + 1)!})ln|x| + x^0 \sum_{n = 0}^\infty [\frac{\partial}{\partial s} ((s - 0) a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)})]_{s = 0} x^n$
$y = \sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1} ln|x|}{n! (n + 1)!} + \sum_{n = 0}^\infty [\frac{\partial}{\partial s} (s a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)})]_{s = 0} x^n$
I make the substitution $b_n = s a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)}$, appearing in the solution as $y = \sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1} ln|x|}{n! (n + 1)!}$ $+ \sum_{n = 0}^\infty [\frac{\partial}{\partial s} b_n]_{s = 0} x^n$.
$b_n = s a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)}$
$ln|b_n| = ln|s| + ln|a_0| + \sum_{m = 1}^n ln|\frac{1}{m + s}| + ln|\frac{1}{1 - m - s}|$
$\frac{\partial}{\partial s} ln|b_n| = \frac{\partial}{\partial s} ln|s| + \frac{\partial}{\partial s} ln|a_0| + \sum_{m = 1}^n \frac{\partial}{\partial s} ln|\frac{1}{m + s}| + \frac{\partial}{\partial s} ln|\frac{1}{1 - m - s}|$
I set $\frac{\partial}{\partial s} ln|a_0|$ to $0$ because the chapter stipulates that this procedure only seeks solutions where $a_0$ is nonzero and does not depend on $s$.
$\frac{\frac{\partial b_n}{\partial s}}{b_n} = \frac{1}{s} + 0 + \sum_{m = 1}^n -\frac{1}{m + s} + \frac{1}{1 - m - s}$
$\frac{\partial b_n}{\partial s} = \frac{b_n}{s} + b_n \sum_{m = 1}^n -\frac{2m + 2s - 1}{(m + s)(m + s - 1)}$
$\frac{\partial b_n}{\partial s} = \frac{s a_0 \Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)}}{s} + s a_0 (\Pi_{m = 1}^n -\frac{1}{(m + s)(m + s - 1)})(\sum_{m = 1}^n -\frac{2m + 2s - 1}{(m + s)(m + s - 1)})$
Now I can simplify the $\Pi$ products using the above formula. I also make the choice for $a_0$ here.
$\frac{\partial b_n}{\partial s} = \frac{s [\Pi_{m = 1}^n -1] [\frac{1}{\Pi_{m = 1}^n (m + s)}] [\frac{1}{\Pi_{m = 1}^n (m + s - 1)}]}{s} + s ([\Pi_{m = 1}^n -1] [\frac{1}{\Pi_{m = 1}^n (m + s)}][\frac{1}{\Pi_{m = 1}^n (m + s - 1)}])(\sum_{m = 1}^n -\frac{2m + 2s - 1}{(m + s)(m + s - 1)})$
$\frac{\partial b_n}{\partial s} = \frac{s [(-1)^n] [\frac{1}{\frac{(n + s)!}{s!}}] [\frac{1}{\frac{(n + s - 1)!}{(s - 1)!}}]}{s} + s ([(-1)^n] [\frac{1}{\frac{(n + s)!}{s!}}] [\frac{1}{\frac{(n + s - 1)!}{(s - 1)!}}])(\sum_{m = 1}^n -\frac{2m + 2s - 1}{(m + s)(m + s - 1)})$
$\frac{\partial b_n}{\partial s} = \frac{(-1)^n s! (s - 1)! + (-1)^{n + 1} s!^2 \sum_{m = 1}^n \frac{2m + 2s - 1}{(m + s)(m + s - 1)}}{(n + s)! (n + s - 1)!}$
Unwinding the substitution, I plug the expression for $\frac{\partial b_n}{\partial s}$ back into the fundamental solution.
$y = \sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1} ln|x|}{n! (n + 1)!} + \sum_{n = 0}^\infty [\frac{(-1)^n s! (s - 1)! + (-1)^{n + 1} s!^2 \sum_{m = 1}^n \frac{2m + 2s - 1}{(m + s)(m + s - 1)}}{(n + s)! (n + s - 1)!}]_{s = 0} x^n$
$y = \sum_{n = 0}^\infty \frac{(-1)^n x^{n + 1} ln|x|}{n! (n + 1)!} + \sum_{n = 0}^\infty \frac{(-1)^n (-1)! x^n + (-1)^{n + 1} x^n \sum_{m = 1}^n \frac{2m - 1}{m^2 - m}}{n! (n - 1)!}$
And now we see that something is broken. $(-1)!$ is undefined, and can't even be rescued by being generalized to the Gamma or Pi function. What am I doing wrong, and how can I use this method to solve this ODE?
