Show for the centroid $M$ of a triangle $ABC$ that $$\vec{OM}=\dfrac13\left(\vec{OA}+\vec{OB}+\vec{OC}\right)$$
where $O$ is an arbitrary point.
I haven't studied position vectors and am very new to vectors so I would like a simple solution. Any help would be appreciated. I don't even know how to start. Maybe we can use the fact that the centroid divides each median in a ratio of $2:1$? Thank you!
- 5,372
- 2
- 11
- 32
-
If you know that e.g. $AM:MA_1=2:1$, can you express this in terms of vectors $\overrightarrow{OA}$, $\overrightarrow{OB}$, $\overrightarrow{OC}$ and $\overrightarrow{OA_1}$? What is $\overrightarrow{OA_1}$ in terms of $\overrightarrow{OB}$ and $\overrightarrow{OC}$? – jlammy Feb 06 '21 at 14:25
4 Answers
As $A_1$ is the midpoint of $BC$,
$2\vec{OA_1} = \vec{OB} + \vec{OC}$
As $M$ is the centroid of the triangle, it divides median $AA_1$ into ratio of $AM:MA_1 = 2:1$
$\vec{OM} = \frac{\vec{OA}+2\vec{OA_1}}{3} = \frac{\vec{OA}+\vec{OB} + \vec{OC}}{3}$
That is all the proof is.
But if you need to further show how $2\vec{OA_1} = \vec{OB} + \vec{OC}$,
$\vec{OA_1} = \vec{OB} + \vec{BA_1}$
But also, $\vec{OA_1} = \vec{OC} + \vec{CA_1} = \vec{OC} - \vec{A_1C}$
As $\vec{BA_1} = \vec{A_1C}$, adding both you have
$2\vec{OA_1} = \vec{OB} + \vec{OC}$
Similarly you can show $\vec{OM} = \frac{\vec{OA}+2\vec{OA_1}}{3}$.
$\vec{OM} = \vec{OA}+\vec{AM}$
As $\vec{AM} = \frac{2}{3} \vec{AA_1}$,
$\vec{OM} = \frac{3\vec{OA}+2\vec{AA_1}}{3} = \frac{\vec{OA}+2(\vec{OA}+\vec{AA_1})}{3} = \frac{\vec{OA}+2\vec{OA_1}}{3}$
- 52,200
-
Thank you for the response! I didn't get why $$\vec{OM}=\dfrac{\vec{OA}+2\vec{OA_1}}{3}$$ – Math Student Feb 06 '21 at 17:10
-
@IDoktorova did you see my explanation in the end? I have shown how. – Math Lover Feb 06 '21 at 17:14
-
If the coordinate of vertices A, B and C are $(x_1, y_1),( x_2, y_2)$ and $(x_3, y_3)$ then coordinate of centroid is $M(\frac{x_1+x_2+x_3)}3,\frac{y_1+y_2+y_3)}3)$.
The vector form is:
$\vec{OM}=(x_M i+y_Mj)=(\frac{x_1+x_2+x_3)}3 i+\frac{y_1+y_2+y_3)}3 j)$
$A(x_1,y_1)$ means vector $\vec{OA}=(x_1 i+y_1 j)$ , so is about B and C so we can write:
$(x_M i+ y_M j)=\frac 13[(x_1 i+y_1j)+(x_2 i+y_2 j)+(x_3 i+y_3 j)]$
Or in vector form:
$\vec{OM}=\frac 13(\vec{OA}+\vec{OB}+\vec{OC})$
Now if you transform coordinate to an arbitrary point like $O(x_O. y_O)$ the coordinates of vertices will be:
$(x_1-x_O, y_1-y_O)$ which is vector $\vec{OA}=(x_1-x_O)i+(y_1-y_O)j$ ,$(x_2-x_o, y_2-y_o)$ which is vector $\vec{OB}=(x_2-x_O)i+(y_2-y_O)j$ and $(x_3-x_O, y_3-y_O)$ which is vector $\vec{OC}=(x_3-x_O)i+(y_3-y_O)j$ .Hence the coordinate of centroid is:
$M(\frac{(x_1-x_o)+(x_2-x_o)+(x_3-x_o)}3),(\frac{(y_1-y_o)+(y_2-y_o)+(y_3-y_o)}3)$
Or :
$\vec{OM}=(\frac{(x_1-x_o)+(x_2-x_o)+(x_3-x_o)}3)i+(\frac{(y_1-y_o)+(y_2-y_o)+(y_3-y_o)}3 )j$
The vector representation of this is:
$\vec{OM}=\frac{\vec{OA}+\vec{OB}+\vec{OC}}3$
- 12,694
-
1How do you know that the coordinates of the centroid are as you claim? Isn't that basically the entire substance of the problem? – jlammy Feb 06 '21 at 14:33
-
-
@jlammy, see centroid coordinates in Wiki.point$A(X_1,Y_1)$ means $\vec {OA}$ where O is origin. – sirous Feb 06 '21 at 14:43
-
3OK, but can you see why that's not very satisfactory? You're essentially quoting a known result that is equivalent to the problem claim: proving the equivalence (as you have done) is easier than proving the Wikipedia result. It's not that much better than saying "Wikipedia defines the centroid as the mean position of all the vertices, which proves the problem". – jlammy Feb 06 '21 at 14:44
The median passing through $A$ has equation$$r=a+s((b+c)/2-a)=(1-s)a+(s/2)b+(s/2)c.$$The median through $B$ is$$r=(t/2)a+(1-t)b+(t/2)c.$$These meet at$$s=t=2/3,\,r=(a+b+c)/3.$$This point lies at $u=2/3$ on the third median,$$r=(u/2)a+(u/2)b+(1-u)c.$$
- 118,053
We take the triple $(A,B,C)$ as barycentric coordinate system for the plane. That means: any point $P$ of the plane is written
$$ P = \alpha A + \beta B + \gamma \,C \qquad \text{ with }\;\alpha+\beta+\gamma=1, \tag{1} $$
which is equivalent to
$$ P-O = \alpha(A-O) + \beta(B-O) + \gamma\,(C-O) \qquad \big[\alpha+\beta+\gamma=1\big] \tag{2} $$
for any point $\,O\,$ of the plane (see Note 1 below).
The numbers $\;\alpha,\beta,\gamma\;$ in $(1)$ are the barycentric coordinates of $\;P\;$ with respect to the given coordinate system.
We have $\;A_1-C=B-A_1\;$ and hence $A_1=\frac12(B+C)$. Similarly for others, so, in barycentric coordinates:
$$ A_1=\frac12(B+C)\qquad B_1=\frac12(A+C)\qquad C_1=\frac12(A+B). \tag{3} $$
The median $AA_1$ is therefore described by equation $\;tA+(1-t)A_1\quad[t\in\Bbb R],\;$ i.e. $\;tA+(1-t)\frac12(B+C)$, and similarly for others medians:
$$ AA_1:\qquad tA+\frac12(1-t)(B+C) \qquad \big[t\in\Bbb R\big] \tag{4}$$ $$ BB_1:\qquad sB+\frac12(1-s)(A+C) \qquad \big[s\in\Bbb R\big] \tag{5}$$ $$ CC_1:\qquad rC+\frac12(1-r)(A+B) \qquad \big[r\in\Bbb R\big]. \tag{6}$$
The lines $(4), (5)$ intersect in a point $M$ iff there exist $t,s\in\Bbb R\;$ such that
$$ M=tA+\frac12(1-t)(B+C) = sB+\frac12(1-s)(A+C) \tag{7}$$
i.e. (see Note 2 below) iff:
$$ t=\frac12(1-s) \qquad\quad \frac12(1-t)=s \qquad\quad \frac12(1-t)=\frac12(1-s) $$
which gives $\;t=s=\frac13$. A similar work on the other medians give $\;t=s=r=\frac13,$ therefore the medians are concurrent in $\;M$, and from $(7)$ we get
$$ M=\frac13A+\frac13B+\frac13C, \tag{8} $$
i.e. the barycentric coordinates of the centroid $M$ are $(\frac13,\frac13,\frac13).$
The equation $(8)$ immediately give our thesis
$$ M-O = \frac13\Big((A-O) + (B-O) + (C-O)\Big). $$
$\quad$
Note 1.$\quad$ We prove that $(2)$ is independent of $\,O$. If $\;O'\;$ is any other point, we have
\begin{align} P-O' &= (P-O) +(O-O') =\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\[1ex] &= \alpha(A-O) + \beta(B-O) + \gamma\,(C-O) + (O-O') =\\[1ex] &= \alpha\Big((A-O')+(O'-O)\Big) + \beta\Big((B-O')+(O'-O)\Big) +\\[1ex] &\qquad\qquad +\gamma\Big((C-O')+(O'-O)\Big) + (O-O')=\\[1ex] &= \alpha(A-O')+\beta(B-O')+\gamma\,(C-O')+(\alpha+\beta+\gamma)(O'-O)+(O-O') =\\[1ex] &= \alpha(A-O')+\beta(B-O')+\gamma\,(C-O'),\\ \end{align} being $\;\alpha+\beta+\gamma=1$.
The point $P$ in $(2)$, independent of $O$, is indicated as in $(1)$.
$\quad$
Note 2.$\quad$ If $\;\alpha+\beta+\gamma = \alpha'+\beta'+\gamma' = 1$, we have $$ \alpha A+\beta B+\gamma\,C = \alpha'A+\beta'B+\gamma'C \quad\implies\quad \alpha=\alpha', \;\;\beta=\beta', \;\;\gamma=\gamma' $$
In fact, by choosing $\;O=A\;$, the preceding equality give
$$ A+\alpha(A-A)+\beta(B-A)+\gamma\,(C-A) = A+\alpha'(A-A)+\beta'(B-A)+\gamma'(C-A) $$
hence
$$ \beta(B-A)+\gamma\,(C-A) = \beta'(B-A)+\gamma'(C-A). $$
As $\;B-A,\;C-A\;$ are linearly independent, we deduce $\beta=\beta'\;$ and $\;\gamma=\gamma'$; and finally $\;\alpha=1-\beta-\gamma=1-\beta'-\gamma'=\alpha'.$
- 1,095