I've posted also on MathOverflow, but repost here once I think it's an important question and would like to get more attention. Thank you!
I have a system of nonlinear Volterra integral equations of form
$$x(t)=x_0+\int_0^t K(t,s)F(x(s))ds$$
and I am interested on the critical points of $x(t)$, I mean maximum, minimum, increasing and decreasing intervals, nonnegativity etc.
I imagine it's impossible to get complete informations about that, but here I am asking for theorems and general results to help me to study these aspects, once is impossible know the true solution.
Thank you.
EDIT I am mainly interested in nonnegativity, since we need it for physically coherent solutions. $K$ is nonnegative and the signal of $F$ depends on signal of $x$. Also interested on asymptotic equilibrium when $\int_0^\infty K(t)dt=\infty$ (but $K(t)\to 0$).