Let $$ R = \mathbb{Z}_m\times\cdots\times\mathbb{Z}_m = \times_{i=1}^\ell\mathbb{Z}_m $$ I'm trying to find the additive order of elements of $R$.
The additive order $\text{ord}(a)$ of $a\in\mathbb{Z}_m$ is the smallest integer $k\in\mathbb{N}$ such that $$ k\cdot a\equiv0\;\bmod m. $$ And resp. for $r\in R$ $$ \text{ord}(r)=\text{min}\{k\in\mathbb{N}:\forall i:k\cdot r_i\equiv0\;\bmod m\}. $$
So far I know that for $a\in\mathbb{Z}_m$ $$ \text{ord}(a) = \frac{\text{lcm}(a, m)}{a} $$ so I would expect $$ \text{ord}(r) = \text{lcm}\left(\frac{\text{lcm}(r_1, m)}{r_1},\ldots,\frac{\text{lcm}(r_\ell, m)}{r_\ell}\right) $$ for $r=(r_1,\ldots,r_\ell)\in R$.
But here I'm already stuck. Is there a way to simplify this any further?