In February 2013, Sadegh Nazardonyavi and Semyon Yakubovich posted on arxiv: Sharper estimates for Chebyshev's functions $\vartheta$ and $\psi$.
I have a question about Theorem 2.27 on page 22.
My question regards the argument for this:
$$\vartheta(x) < 1.000027651, \;\;(x > 0)$$
I can follow the beginning of the proof:
Let:
$$8\cdot10^{11} \le x < 10^{16} $$
From Theorem 2.2.5 on p21 (which is taken from N. Costa Pereira. Estimates for the Chebyshev function $\psi(x) - \theta(x)$. Math. Comp.,44(169):211-221,1985.):
$$\psi(x) - \vartheta(x) > \sqrt{x} + \frac{6}{7}\sqrt[3]{x}, \;\;\;(2,036,329 \le x \le 10^{16})$$
Then:
$$\vartheta(x) < \psi(x) - \sqrt(x) - \frac{6}{7}\sqrt[3]{x}$$
I am unclear on the next step:
$$ \psi(x) - \sqrt(x) - \frac{6}{7}\sqrt[3]{x} < \left\{1.0000284888 - \frac{1}{\sqrt{x}} - \frac{6}{7}\frac{1}{\sqrt[3]{x^2}}\right\}x $$
I can see that:
$$- \sqrt(x) - \frac{6}{7}\sqrt[3]{x} < \left\{- \frac{1}{\sqrt{x}} - \frac{6}{7}\frac{1}{\sqrt[3]{x^2}}\right\}x $$
I am unclear how it is established that:
$$\psi(x) < 1.0000284888x$$
If anyone can help me to understand this, that will be very helpful.
Thanks,
-Larry