I am looking at the proof of $\lim_{p\to \infty} ||f||_p = ||f||_{\infty}$ here where we first show that:
$$\liminf_{p\to +\infty}\lVert f\rVert_p\geqslant\lVert f\rVert_\infty.$$
By using:
Fix $\delta>0$ and let $S_\delta:=\{x,|f(x)|\geqslant \lVert f\rVert_\infty-\delta\}$ for $\delta<\lVert f\rVert_\infty$. We have $$\lVert f\rVert_p\geqslant \left(\int_{S_\delta}(\lVert f\rVert_\infty-\delta)^pd\mu\right)^{1/p}=(\lVert f\rVert_\infty-\delta)\mu(S_\delta)^{1/p},$$ since $\mu(S_\delta)$ is finite and positive. This gives $$\liminf_{p\to +\infty}\lVert f\rVert_p\geqslant\lVert f\rVert_\infty.$$
May I know why $S_\delta$ has a strictly positive measure. I am thinking of a discontinuous function $f$ which is a point (which is the sup of $f$) along with a continuous segment such that $S_\delta$ is a single point and its measure is $0$?