For $x$ and $q$ fixed we have $\displaystyle\limsup_{p\to\infty}\|x\|_\infty^{1-\frac{q}{p}}=\lim_{p\to\infty}\|x\|_\infty^{1-\frac{q}{p}}=\|x\|_\infty$
For $x$ and $q$ fixed we also have $\displaystyle\limsup_{p\to\infty}\|x\|_q^\frac{q}{p}=\lim_{p\to\infty}\|x\|_q^\frac{q}{p}=\|x\|_q^0=1$
The previous limits can be obtained like that because $\|x\|_\infty$ and $\|x\|_q$ are just some numbers $a,b\ge0$, so it's the same as thinking of $\displaystyle\lim_{p\to\infty}a^{1-\frac{q}{p}}$ and $\displaystyle\lim_{p\to\infty}b^\frac{q}{p}$.
Since both limits exist, then the limit of the product is the product of the limits, and therefore the $\displaystyle\limsup_{p \to \infty} \left( \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}}\right) =\lim_{p\to\infty}\left( \|x\|_{\infty}^{1-\frac{q}{p}} \cdot \|x\|_q^{\frac{q}{p}}\right)= \lim_{p\to\infty} \|x\|_{\infty}^{1-\frac{q}{p}} \cdot\lim_{p\to\infty} \|x\|_q^{\frac{q}{p}}=\|x\|_{\infty} \cdot 1$