[toc]
Good question, they are not compatible.
case1----[MacMahon] Mirror symmetrical with self
QInteger[n_, q_] := Sum[q^i, {i, 0, n - 1}];
QCatalan[n_, q_] := QBinomial[2 n, n, q]/QInteger[n + 1, q];
QCatalan[#, q] & /@ Range[0, 5] // FunctionExpand //
FullSimplify // Expand
$
C_n(q)=\frac{1}{[n+1]_q}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_q
$ produces the follows.
$$
\left\{1,1,q^2+1,q^6+q^4+q^3+q^2+1,q^{12}+q^{10}+q^9+2 q^8+q^7+2 q^6+q^5+2 q^4+q^3+q^2+1,q^{20}+q^{18}+q^{17}+2 q^{16}+2 q^{15}+3 q^{14}+2 q^{13}+4 q^{12}+3 q^{11}+4 q^{10}+3 q^9+4 q^8+2 q^7+3 q^6+2 q^5+2 q^4+q^3+q^2+1\right\}
$$
case2----[Carlitz and Riordan], Mirror symmetrical with case3
qc[0] := 1;
qc[1] := 1;
qc[n_] := Sum[qc[k]*qc[n - 1 - k]*q^(k), {k, 0, n - 1}];
qc /@ Range[0,5] // Expand
However, $C_{n+1}(q)=\sum\limits_{k=0}^n q^k C_k(q) C_{n-k}(q)$ produces
$$
\left\{1,1,q+1,q^3+q^2+2 q+1,q^6+q^5+2 q^4+3 q^3+3 q^2+3 q+1,q^{10}+q^9+2 q^8+3 q^7+5 q^6+5 q^5+7 q^4+7 q^3+6 q^2+4 q+1\right\}
$$
case3----[Carlitz] Mirror symmetrical with case2
qc[0] := 1;
qc[1] := 1;
qc[n_] :=
Sum[qc[k]*qc[n - 1 - k]*q^((k + 1) (n - 1 - k)), {k, 0, n - 1}];
qc /@ Range[0,5] // Expand
$C_{n+1}=\sum\limits_{k=0}^n C_k C_{n-k} q^{(k+1)(n-k)}$ produces
$$
\left\{1,1,q+1,q^3+2 q^2+q+1,q^6+3 q^5+3 q^4+3 q^3+2 q^2+q+1,q^{10}+4 q^9+6 q^8+7 q^7+7 q^6+5 q^5+5 q^4+3 q^3+2 q^2+q+1\right\}
$$
I dont't konw such recurrence (1.2) that, \eqref{1.2} is compatible with \eqref{1.1}
$$
C_n(q)=\frac{1}{[n+1]_q}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]_q \label{1.1} \tag{1.1}
$$
$$
?\tag{1.2} \label{1.2}
$$
ref
https://homepage.univie.ac.at/josef.hofbauer/85jct_catalan.pdf
https://mathoverflow.net/questions/263164/generating-q-catalan-numbers?rq=1
https://www2.math.upenn.edu/~jhaglund/books/qtcat.pdf
https://www.symmetricfunctions.com/q-analogues.htm#prelimQanalogsCatalan