Here's another strategy, although I like JCAA's explanation better.
Notice $[\text{Col}(A)]^{\perp}=N(A^T)$ and $\text{Col}(A) \oplus [\text{Col}(A)]^{\perp}=\mathbb{R}^n$. From this we immediately see $\text{nullity}(A^T)=n-\text{rank}(A)$ and so with rank nullity
$$n=\text{rank}(A^T)+\text{nullity}(A^T)=\text{rank}(A^T)+n-\text{rank}(A)$$ which boils down to $\text{rank}(A)=\text{rank}(A^T)$. Also, if you're looking to prove that $N(A^TA)\subseteq N(A)$ note $\vec{x}\in N(A^TA)$ implies $$0=\vec{x}^TA^TA\vec{x}=(A\vec{x})^T(A\vec{x})=||A\vec{x}||^2$$ and so $A\vec{x}=0$ i.e. $\vec{x}\in N(A)$.