To show a non-negative determinant, it suffices to get the result by calculating the spectrum for a particularly simple case, then extend this to the more general case.
lemma:
$\det\left(\begin{bmatrix}
I & C\\
-C & I
\end{bmatrix}\right)\geq 0$
using the Kronecker Product
$\left(\begin{bmatrix}
\mathbf 0 & C\\
-C & \mathbf 0
\end{bmatrix}\right) = \left[\begin{matrix}0 & 1\\ -1 & 0\end{matrix}\right] \otimes C$
with $\lambda_k$ being eigenvalues of $C$, the above has spectrum $\big\{i\cdot \lambda_1, -i\cdot \lambda_1, ..., i\cdot \lambda_n, -i\cdot \lambda_n\big\}$ thus
$\det\left(\begin{bmatrix}
\mathbf 0 & C\\
-C & \mathbf 0
\end{bmatrix}+ I_{2n}\right) = \prod_{k=1}^n \big(1 + i \cdot\lambda_k\big)\big(1 - i \cdot\lambda_k\big)$
since $\left(\begin{bmatrix}
\mathbf 0 & C\\
-C & \mathbf 0
\end{bmatrix}+I_{2n}\right) $ is real all of its non-real eigenvalues come in conjugate pairs, and their product is positive. Now consider purely real eigenvalues for the above matrix, their preimage under the Kronecker Product must have been purely imaginary eigenvalues of $C$.
Thus suppose we have $\lambda_j = a +i\cdot b= 0+i \cdot b$ and $\lambda_{j+1}=-i\cdot b$ since $\lambda_j$ itself must have come in conjugate pairs since $C$ is real. Then bunching together their contribution to the determinant we have
$\big(1 + i \cdot\lambda_j\big)\big(1 - i \cdot\lambda_j\big)\big(1 + i \cdot\lambda_{j+1}\big)\big(1 - i \cdot\lambda_{j+1}\big)$
$=\big(1 - b \big)\big(1 + b\big)\big(1 + i \cdot (-i\cdot b)\big)\big(1 -i\cdot(-i\cdot b)\big)$
$=\big(1 - b\big)\big(1 + b\big)\big(1 + b\big)\big(1 - b \big)$
$=\big(1 - b\big)^2\big(1 + b\big)^2$
$\geq 0$
Thus
$\det\left(\begin{bmatrix}
I & C\\
-C & I
\end{bmatrix}\right)\geq 0$ because it decomposes into the product of real non-negative terms and hence is itself $\geq 0$.
main proof:
if $\det\left(\begin{bmatrix}
A & B\\
-B & A
\end{bmatrix}\right) \lt 0$ then by continuity of the determinant
$\det\left(\begin{bmatrix}
A+\delta I & B\\
-B & A + \delta I
\end{bmatrix}\right) \lt 0$
for all small enough $\delta \gt 0$
We'll show this is impossible.
Note that since $A$ has finitely many eigenvalues, $Z:=(A+\delta I)$ must be invertible for small enough $\delta$. So after fixing some sufficiently small $\delta$, we have
$\det\left(\begin{bmatrix}
Z & B\\
-B & Z
\end{bmatrix}\right)$
$= \det\left(\begin{bmatrix}
Z & \mathbf 0\\
\mathbf 0 & Z
\end{bmatrix}\begin{bmatrix}
I & Z^{-1}B\\
-Z^{-1}B & I
\end{bmatrix}\right) $
$= \det\left(\begin{bmatrix}
Z & \mathbf 0\\
\mathbf 0 & Z
\end{bmatrix}\right)\cdot \det\left(\begin{bmatrix}
I & Z^{-1}B\\
-Z^{-1}B & I
\end{bmatrix}\right) $
$= \det\big(Z\big)^2 \cdot \det\left(\begin{bmatrix}
I & C\\
-C & I
\end{bmatrix}\right) $
$\geq 0$