Let $X=(C^1[0,1],d)$ and $Y$ be $C[0,1]$ endowed with a metric $d’$ such that $d’(f,g)=\sup_{x\in [0,1]} |f(x)-g(x)|$. It is well-known (see, for instance, Theorem 4.3.13 from [Eng]) and easy to show (see, for instance, this thread)
that $(Y,d’)$ is complete. Clearly, that a map $\partial: X\to Y$, $f\mapsto f’$ is Lipshitz with the constant $1$.
Let $\{F_n\}$ be a Cauchy sequence in $X$. Since the map $\partial$ is Lipshitz, $\{\partial F_n\}$ is a Cauchy sequence in $Y$. Since the space $Y$ is complete, the sequence $\{\partial F_n\}$ has a limit $f$. Since a sequence $\{F_n(0)\}$ is Cauchy, there exists a limit $F(0)=\lim_{n\to\infty} F(0)$. For each $x\in [0,1]$ put $F(x)=F(0)+\int_0^x f(t)dt$. By Newton-Leibnitz formula, $F’(x)=f(x)$ for each $x\in [0,1]$.
We claim that $\{F_n\}$ converges to $F$. Indeed, let $\varepsilon>0$ be any number. Since $\{F_n(0)\}$ converges to $F(0)$, there exists natural $N$ such that $|F_n(0)-F(0)|\le\varepsilon/2$ for each $n>N$. Since $\{\partial F_n\}$ converges to $f$, there exists natural $N’\ge N$ such that $d’(\partial F_n, f)\le\varepsilon/2$ for each $n>N’$. Fix any such $n$ and any $x\in [0,1]$. By Newton-Leibnitz formula, $F_n(x)=F_n(0)+\int_0^x \partial F_n(t)dt$. Thus
$$|F_n(x)-F(x)|=$$ $$\left|F_n(0)+\int_0^x \partial F_n(t)dt - F(0)-\int_0^x f(t)dt \right|\le$$
$$|F_n(0)-F(0)|+\left|\int_0^x \partial F_n(t)dt -\int_0^x f(t)dt \right|\le$$
$$\varepsilon/2+\left|\int_0^x (\partial F_n(t)-f(t))dt \right|\le$$
$$\varepsilon/2+\left|\int_0^x |\partial F_n(t)-f(t)|dt \right|\le$$
$$\varepsilon/2+\int_0^x \varepsilon/2\le$$ $$ \varepsilon/2+\varepsilon/2=\varepsilon.$$
Thus $d’(F_n,F)\le \varepsilon$ and so $d(F_n,F)=d’(F_n,F)+ d’(\partial F_n, f)\le 2\varepsilon$. Therefore $\{F_n\}$ converges to $F$ and so the space $X$ is complete.
References
[Eng] Ryszard Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.